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RESUME.  On présente une nouvelle approche pour  traiter simplement la conduction multidimensionnelle 
dans un solide cylindrique. La méthode, basée sur la décomposition de la solution sur les fonctions propres 
du Laplacien, s’applique pour toutes les conditions limites réalistes que l’on obtient sur la surface d’un 
cylindre placé dans un écoulement normal à son axe. Elle est donc bien adaptée à l’étude des échanges 
thermiques dans un échangeur à courants croisés. 
 
 1  INTRODUCTION 
Let us consider a homogeneous thermal conductive solid cylinder of circular basis, immerse in   
steady fluid flow, normally to the flow axis, according to figure1.Thus, a thermal equilibrium is 
reached where the thermal boundary condition, at each point SM , on the cylinder surface (with R e  
radius), depends on the angleϕ  between the cylinder radius O eM and the asymptotic direction of 
the flow (see figure1). The length of cylinder axis and the width of the channel where the fluid 
flows, are very large and there is no heat source in the solid. Then the temperature on the external 
surface ( )exT ϕ  of the solid body is depending on the angleϕ  only and it is the same for the other 
thermal surface parameters (convective unit h , components of the heat flux vector q). Two 
interesting geometric configurations maybe retained for the cylinders :1) a full solid cylinder, 2) a 
solid cylinder involving a cylindrical hollow of same axis as the surfaces; in the hollow occurs a 
fluid flow characterized by negligible gradients in the axis direction (fig1). Usually, the thermal 
boundary condition on the external wall  surface eS  are given under  one of the  following forms: 
temperature profile on the wall i.e. ( ) ( , )extT R T R ϕ=  (a); profile of the heat flux radial component on 
the wall, i.e. ( ) ( , )r r extq R q R ϕ=  (b) ; convective exchange at the wall i.e., 

{ / } ( ) { ( , ) ( )}gT r h T R Tλ ϕ ϕ ϕ∂ ∂ = −  (c). Moreover, in the solid, the thermal conductivity 
coefficient λ is usually assumed as constant.  We can still remark that in the case of the full solid 
cylinder, the total radial heat flux through any fictitious cylindrical surface involved in the solid 
material is necessary equal to zero in steady regime; but the local radial heat flux component is not 
required here to be vanishing because of the two- dimensional effect. 
In the case of the cylinder including an hollow, owing to the previous assumptions, the boundary 
conditions on the external and internal surfaces, respectively eS (radius eR ) and iS (radius iR ), may  
be known also under one of the  forms  given above. In such conditions the systems under 
consideration (full or hollow cylinders) present two symmetry planes from both thermal and 
geometrical points of view: namely an horizontal plane, defined by the external flow axis and the 
cylinder axis, and a vertical plane, containing a cross section of the cylinder and, again, the external 
flow axis. Fig1 represents the section of the system in a vertical symmetry plane and x’Ox axis is 
the trace of the horizontal symmetry plane. The configuration described here above is close to those 
of a heat exchanger involving crossed flows. Thus, it seems interesting to investigate accurately the 
state of the art about the analytic treatment of such a thermal problem and to develop a method 



suitable in all the cases described above (possibly coupled with the fluid dynamic studies of the 
flows). This article is the first step of this research. We develop, in the following sections, a novel 
approach in order to derive analytic solutions of the heat equation in this domain: this new approach 
will be shown first simpler and more easy to use in the case where other more classical methods 
have been previously developed. Then it will be shown also that the novel type of analytic 
calculation may be extended in a larger field than those investigated by using classical approaches. 
     
2- THE STATE OF THE ART. 
 2.1 Classical approach for the full cylinder  
 In the classical text-books [1], the case of the full solid cylinder is only explicitly treated, if 
 associated with the external boundary conditions of type (a) above. In [1], one can find, for this 
 case, a method based first on ( , , )ext eT R zϕ   expansion in a Fourier series of ϕ  angle (in our case, 
the z space coordinate along z axis would not appear). This classical method utilizes then the 
knowledge of a peculiar solution of this problem, taking a finite value on the cylinder axis : namely 
the function ( , , )nF r zϕ represented by ( ) cos ( ) cosnI r z nα α β ϕ− , or by the other possible 
expression ( )cos ( )sinnI r z nα α β ϕ− . ( )nI rα  is the modified Bessel function of n order, and the 
sinusoidal functions are precisely those used to expand the boundary temperature. Thus the solution 
at each point in the solid is obtained as a linear combination of the infinite countable series of 

( , , )nF r zϕ  functions, for varying integer n, by adjusting the combination coefficients in order to 
satisfy the boundary condition. Finally, using algebraic manipulations, the results are transformed in 
a  ( )nJ ar   first order Bessel functions series. In the case of another boundary condition type, 
defined above as condition of type b or c, the analytical calculation is not developed, at our 
knowledge, neither according this method, nor according another else. May be, it would be possible 
to obtain the result by using the previous approach, but it would be certainly a very hard task, giving 
the result under a very complicated form Therefore in the next section a novel method will be 
developed, suitable to give the results using boundary conditions of type a, b or c. 
 
2.2 Classical approach for the hollow cylinder 
Considering the features of the classical method described above, it is clear that this heavy 
procedure would be practically impossible to use in the case of an hollow cylinder. As a satisfying 
coefficient adjustment of the series quoted above would be impossible to obtain : because it would 
be required to verify, in the same time, two different precise conditions, i.e., two contradictory 
constraints. Therefore, usually another classical approach [1], based on conform transformations, is 
used to treat this case; theoretically the method may be associated to the use of the superposition 
property of linear system, in order to reduce the real problem to elementary problems involving 
simpler boundary conditions. But, the unique case where a detailed calculation is made, concerns 
boundary conditions of type (a)  where the surface temperatures are given precisely: 

0, i iT for r R on S= =  and ( , ),e e e eT T R for r R on Sϕ= = . But the use of the superposition 

property is here possible only to treat the case where two temperature profiles (different from zero) 
are given on surfaces iS  and eS . Otherwise, it would be difficult, probably impossible, to extend 
this approach to the case where a flux condition (of type b or c) is involved in the boundary 
conditions. Then, it is impossible to decompose the real physical problem according to partial 
elementary problems directly solvable by the method: the boundary conditions could not represent 
the values of a same function, respectively equal to zero on iS  and equal to a given profile on eS . 
As we show it in next sections, the novel approach proposed in this article furnishes an expansion 
suitable to be extended whatever the type of boundary conditions previously described . 
 
 3. THE THEORETICAL BASES OF OUR APPROACH.  
The other authors of classical standard books [2] or of more recent works [3] did not bring 
significant supplement on this question. The approach presented here has been utilized, to solve 



equations involving partial derivative functions, in various fields of the physics (notably the 
diffusion of neutrons). But it was, until to now, poorly employed for solving the heat transfer 
problems and in this sense, it may be considered as a novel approach in this domain. The aim of this 
article is to apply and develop this method to the thermal processes described in previous sections. 
 
3.1General features  
This approach is mainly based on the spectral properties of the Laplacian operator included in the 
heat equation: when applied to a space functions defined on a finite spatial domain D the spectre of 
the Laplacian eigeen functions is a discrete spectrum. If in addition, we require that these functions 
shall verify, on the frontier of the spatial domain, a “condition of cancellation” (i.e., when on the 
boundary is verified either the nullity of the function, either the nullity of its normal derivative, or a 
constant function to derivative ratio) then the countable set of the L eigeen functions forms a basis 
of the space of the L2 functions defined on the spatial domain D. Moreover each function of the set 
is orthogonal to the other set functions in the sense of the hermitic product defined on the functional 
space. Finally the eigeen values associated to the eigeen functions form a discrete countable series 
of real negative numbers. Then it appears convenient to search the thermal solutions of the heat 
equation in finite spatial domain, under the form of expansions on the set of the Laplacian eigeen 
functions. As matter of fact: 
--The basis property of these functions guarantees the uniqueness of the solution so found. 
--In many cases (especially when the surface and environment temperatures are constant), the  
   boundary condition verified on the eigeen functions insures the thermal boundary conditions, 
   because of their similarity. 
-The use of L eigeen function basis allows significant simplifications in the heath equation: the  
  Laplacian operator vanishes and the partial derivative equation reduces to a simple differential  
  equation generally easy-to-solve. 
But the calculation process described above was rather convenient to treat unsteady phenomena, 
more precisely in geometrical configuration where the multi spatial variable eigeen functions of 
Laplacian operator are well known. In this theoretical frame the main problem was to describe the 
coupling between the time dependence and the spatial dependence of the process. . 
 
 3.2 Special treatment for multi dimensional steady transfers. 
In our case the problem is different. In steady condition, without any heat source in the solid mass, 
the heat equation in the solid reduces to Laplace equation 0T∆ = , (where∆  is the Lapacian 
operator).  Thus, here the knowledge of the spectrum of the complete operator is not of any interest. 
On  the contrary it is convenient to split the operator material into different parts regarding 
respectively the different space variables. It is easily shown, using trivial calculations, that all the 
properties quoted above regarding the spectral elements of the complete L operator may be 
transposed on each partial L operator acting on the space of functions restricted to the space 
variable considered in each partial operator. Therefore the most convenient partial operator will be 
retained and investigated in regard to its spectral elements. Then the solution will be researched 
again under the form of a series of functions: but here the temperature will be expanded according 
to the eigeen functions (depending on a single spatial variable) of the retained partial L operator. 
 
4. APPLICATION.TWO-DIMENSIONAL STEADY HEAT CONDUCTION IN FULL AND 
 HOLLOW  CYLINDERS.  . 
The cases of the hollow and full cylinders will be treated together, and the second one will be 
obtained as the limit of the first one when the radius of the internal .solid surface tends to zero.  Of 
course it appears suitable to use here the cylindrical coordinates: r (the local radius) and ϕ  (thepolar 
angle).Consequently equation the Laplace equation reads in a more explicit form:   
 
 2 2{ / ( / )} /r r r T r T ϕ∂ ∂ ∂ ∂ + ∂ ∂ =0                                                                                                   (1) 
 



 
Moreover, whatever the boundary 
conditions of type a, b or c 
considered in the previous sections, 
taking into account the horizontal 
plane of symmetry of the problem 
(defined by x’Ox in figure1), it is 
clear that the boundary conditions on 
the ϕ  angle will be: 
 
 
 
 

Fig.1 The cylinder axes are normal to the plane of the sheet 
 
ϕ 0=  → 0( ,0) ( / ){ / } 0q r r T

ϕ
λ ϕ= − ∂ ∂ = ; ϕ π= → ( , ) ( / ){ / } 0q r r T πϕ

π λ ϕ= − ∂ ∂ =           (2) 

which represent a type of “cancellation condition” described in section 3.1. 
Let us note first, that from now, we reduce the domain of the study to the superior half-cylinder  
(corresponding to [0, ]ϕ π∈ ) and we complete then the study by using the symmetry quoted 
previously. Let us note then, that here the physical boundary conditions on the r space variable are 
not convenient here to play the role of “cancellation boundary conditions. Therefore, according to 
the comments at the end of sections 3-1 and 3-2  on the suitability of the of the basis, it appears here 
more convenient to chose as basis functions a set of function depending on theϕ  variable, namely 
the eigeen functions of the partial L operator depending onϕ  in Eq. (1). Therefore we will write the 
temperature in the following form: 
 

  T =
0

( ) ( )n nC r f ϕ
+∞

∑   ,      2 2/nd f dϕ  = n nfλ       0( / ) ( / ) 0n ndf d df d πϕ ϕ= =                                 (3) 

where the ( )nf ϕ  are the set of eigeen of functions of the partial L operator  2 2/ ϕ∂ ∂ present in Eq. 
(1) and where the latter  condition reproduces the conditions (2). Then, solving the system (3) and 
normalizing the solutions on the [ 0 π− ] range described by ϕ  when the upper half cylinder is 
described, one easily obtains: 
 
  0 1/f π=           nf = 2 / cos nπ ϕ           ,         2

n nλ = −                                                           (4)                       
 
where n describes the natural integer values. Then, injecting expression (3) of the temperature in 
Eq.(1) and taking into account the basis properties we obtain , for 0n ≠ , a second order 
homogeneous  differential equation: 
 
   / { / } 0d dr rd dr =  0for n =  (a)  ;  2 2 2 2( / ) ( / ) 0n n nr d C dr r dC dr n C+ − =   (b)                         (5)       
                                                                        
 Eq. (5a) leads obviously to  0 0oC A B Lnr= +  As well known, for 0n ≠ , a typical  solution of 
Eq.(5b)  is searched under the form: C n = sr , where s is a real number to be determined . Replacing 
the C n  expression in (5b) yields: 
  
  2 2s n s n− → = ±    --->  n n

n n nC A r B r−= +   ,                                                                             (6) 
     
 



where nA  and nB  are  sets of real constants depending on the thermal  boundary conditions. 
Using non dimensional spatial variables: ρ =  / er R , /i i er Rρ = ,  the general solutions of the family 
of problems described above, reads: 
. 
 / refT Tθ = = 1/π  * *

0 0{ }a b Lnρ+ + * *2 / { }cosn n

n
n na b nπ ρ ρ ϕ−+∑                                           (7) 

with [ 1]iρ ρ∈ , where the choice of refT depends on the thermal conditions of the problem. 

In the same way, the calculation of the constants *
na  and *

nb  (like would be those of nA  and   nB  ) is 
carried out from the boundary conditions on the cylindrical surfaces limiting the solid. 
From now, we consider especially the case where the temperature profiles are prescribed on the 
cylindrical boundary surfaces.  Using the non dimensional space variables we note:                                             
 

( , ) ( )i i i iT T on Sρ ϕ θ ϕ=                     1( , ) ( )e e eT T on Sϕ θ ϕ=                                                       (8) 
 
To manage more easily the calculation we use the steady state superposition property characterizing 
the problem. The real physic problem is split into two partial problems 
       
 ( , ) ( , ) ( , ),T u vρ ϕ ρ ϕ ρ ϕ= +                                                                                                              (9) 
 
where u  and v  have also to verify simultaneously: 
 
      ( , ) 0iu ρ ϕ =     ( , ) .i iv Tρ ϕ = ( )iθ ϕ   ;  1, )( . ( )e eTu ϕ θ ϕ=   1, ) 0(v ϕ = .                                        (10) 
 
Moreover, at any point in the solid, according to Eqs.(1, 3a), we obtain for u : 
 

     2 2{ / ( / )} /r r r u r u ϕ∂ ∂ ∂ ∂ + ∂ ∂ =0                       u =
0

, ( ) ( )u n nC r f ϕ
+∞

∑ ,                                          (11)                    

 
Then considering the uniqueness of the solution it is clear that in any point T will be obtained 
according to Eq.(9). Indeed, from Eq (11) we obtain also according to Eq.(6): 
 
 ,0uC = ,0 ,0 ,0 ,0u u u uA B Lnr a b Lnρ+ = +      , , , , ,

n n n n
u n u n u n u n u nC A r B r a bρ ρ− −= + = +                       (12)  

  
Then, from Eqs.(10), using the property of the basis and the hermitic product defined on the L2  
functional space, we obtain, respectively on iS and eS , for u:   
                           
 ,0 ,0u u ia b Lnρ= − ;        , , , 0n n

u n i u n i na b k if nρ ρ−= − = ≠                                                           (13a)  

0,ua = /eT π
0

( )e d
π
θ ϕ ϕ∫ ,

0, , 2 / , 0( )coseu n u n ea if nb T n d
π

π θ ϕ ϕ ϕ ≠+ = ∫                       (13b) 

 
Solving  Eqs..(13)   using Eqs..(11,12)  , we obtain u 
 

  ,0
1

,( [ { ( / )}/ ] 2 {( / ) ) }cos /{ (14)) ( ( / })i i i i
n

n n n n
e e e n i iu T Ln Ln nθ ρ ρ ρ θ ρ ρ ϕ ρρ ρ ρ

+∞

=

− −= − + − −∑  



Where the following average temperatures have been defined whatever n : 

0
, (1 ) cos ,( )e n e n d n

π

θ π θ ϕ ϕϕ= ∀∫ .   Of course, using the same way for v , we obtain : 

,0
1

,( [ { ( )} / ] 2 {( ) ) }cos /{ (15)) ( ( })i
n

n n n n
i i n i iv Ti Ln Ln nθ ρ ρ θ ρ ϕ ρρ ρ

+∞

=

− −= + − −∑   

 
where , ,i nθ  is deduced from ( )iθ ϕ  in the same way as ,e nθ  is deduced from ( )eθ ϕ . Then we use 

 Eq.(9), we note * /( )i eT T Tθ = + , we remark that the difference{( ) ) }(n nρ ρ −− reads also 
2 ( )Sh nLnρ ; thus writing  the other similar expressions  in the same way, we can write: 

 

   0
* * 2θ θ− =

1

* *
, ,( ) ( ( /

cos
(

))
[ ]

)
i n e n i

n i

Sh nLn Sh nLn
n

Shn Ln
θ ρ θ ρ ρ

ϕ
ρ

+∞

=

−
∑  = 2

1

*
n

n
θ

+∞

=
∑                                         (16) 

 
*
/ ,e i nθ  is deduced  from *

/ ,e i nθ   in the same way as / ,e i nθ  is deduced from / ,e i nθ  and 0
*θ  the first term, 

of order n=o, in the *θ expansion, equals  
0,0 ,

* *{ ( ) ( / }/i iei
Ln Ln Lnθ ρ θ ρ ρ ρ− . This form is not the 

same as those found in reference [CJ], but such a result is not surprising because the sets of 
functions generating the functional space are numerous and each of them leads to a different 
expansion of the solution and so to a different form. We can still note the intriguing following 
result: each term *

nθ  of the sum Σ  in (25) second member tends to 0
*θ  when n tens to 0. 

In addition, when 0iρ −− > ,  i. e. for the full cylinder case, each term  *
nθ    of the sum tends to  

*
,e nθ cosn nρ ϕ  ( which could be obtained directly solving (10b) in this case) and moreover  

 Eq. (10a) would lead to 0
*θ  equal to ,

*
e nθ   . But here it is convenient to use anywhere the non 

dimensional temperature / eT Tθ =  instead of *θ , so we obtain 
 
  ,0 2eθ θ += ,e nθ cosn nρ ϕ                                                                                                            (17) 
 
COMMENTS AND CONCLUSION. 
This method may be used for the other forms of boundary conditions quoted in the Introduction. For 
example when a normal heat flux is given on a surface the eigeen functions of L operator remain the 
same. Moreover the boundary conditions on the surfaces are treated in a similar manner as 
previously: writing the boundary conditions on the surface by mean of equations analogous to 
Eq.(10). The temperature expressions have just to be previously derived following the r (or ρ ) 
variable. Finally considering realistic boundary conditions of type (c), no supplementary theoretical 
difficulty appears. Thus to solve a crossed flow heat exchanger problem we have just to obtain 
realistic simple expression of convh the convection coefficient per surface unit. This is our aim in next 
future. 
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