
  

 
 

Laminar Rayleigh-Bénard Convection in Perfectly 

Conducting Curvilinear Cavities 
 
 
 

R. Haj Mohamad1, A.Mourtada1, X. Chesneau2 and  B. Zeghmati 2 
 
1 Faculty of Engineering III, Lebanese University, Hadeth Beirut, Lebanon 
2 Laboratoire de Mathématiques et Physique des Systèmes, Groupe de Mécanique Énergétique,  
Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan cedex, France 
Email : hrami73@hotmail.com 
 

Abstract 

A numerical work carries on flow structures and heat transfer rates generated by Rayleigh-Bénard 
convective motions of Boussinesq fluid with a Prandtl number of 0.7 in a perfectly conducting 
curvilinear cavities of aspect ratios : 1 ≤ Lx ≤ 5, 1 ≤ Ly ≤ 10. Transfer equations based on 
Boussinesq approximation are solved by using the FLEXPDE software. The heating rate, 
introduced through a time dependent Rayleigh number Ra, drives a flow transition in the range of 
supercritical Rayleigh numbers : 103 ≤ Ra ≤ 106. The flow pattern starts of a single, symmetric 
circulation cell for low Rayleigh number, but highly mixed , thermally stratified two-dimensional 
flow and the circulation cell undergoes cross-sectional changes in high range of Rayleigh 
number. Numerical values of the Nusselt number as a function of the Rayleigh number and the 
cavity aspect ratio are reported. The influence of the dimensionless distance between the heated 
plate and the cooled sides on the average Nusselt number < Nu > is more significant for the 
system with a smaller Ra. 

Résumé : Une étude numérique de la convection naturelle de type Rayleigh –Bénard dans une 
enceinte demi-cylindrique remplie d’air est présentée. La paroi supérieure de cette enceinte est 
soumise à un flux de chaleur uniforme de densité constante et l’autre paroi est refroidie par  un 
flux uniforme de densité constante. Les transferts dans l’enceinte sont décrits par les équations 
classiques de la convection naturelle écrites dans un référentiel cartésien. Ces équations basées 
sur l’approximation de Boussinesq sont résolues en utilisant le  code industriel FLEXPDE Nous 
analysons l’influence des rapports de forme de l’enceinte (1 ≤ Lx ≤ 5, 1 ≤ Ly ≤ 10. ) et du nombre 
de Rayleigh (103 ≤ Ra ≤ 106 )  sur la structure de l’écoulement et les transferts de chaleur.  Les 
résultats montrent notamment que la structure de l’écoulement est décrite, pour les faibles 
nombres de Rayleigh, par deux cellules contrarotatives. L’influence du rapport de forme de 
l’enceinte Lx / Ly sur le nombre de Nusselt < Nu > et la valeur maximale de la fonction de 
courant augmente avec le nombre de Rayleigh.  

Keywords: Rayleigh-Bénard convection; Curvilinear Cavities; Stream function, isotherm, Nussel 
number. 
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Nomenclature  

g gravitational acceleration (m s-2) 
k thermal conductivity (W m-1 K-1) 
Lx cavity half length (m) 
Ly cavity height (m) 
Nu local Nusselt number 
<Nu> overall Nusselt number 
Pr  Prandtl number 
q1,2 heat flux  density , (W m-2) 
Ra Rayleigh number, k α /νqL gβ 1

4
y  

Ra(t) time dependent Rayleigh number (Ra 
 / τ) t 
T Temperature (K) 
∆T difference temperature, (q1 Ly / k) 
(K)  
t time (s) 
u, v velocity components at x, y 
 coordinates respectively (m s-1) 

U, V dimensionless velocity components 
 at X, Y coordinates respectively 
x, y Cartesian coordinates (m) 
X, Y dimensionless Cartesian coordinates 
 
 

Greek symbols 

 
α thermal diffusivity (m2 s-1) 
β thermal expansion coefficient (K-1) 
ξ dimensionless vorticity 
Θ dimensionless temperature 
Ψ dimensionless stream function 
τ dimensionless duration of the 
 unsteady heating 
 

 
 
1. Introduction 

Rayleigh-Bénard (RB) convection is taking considerable importance since it is related to some of 
the flow phenomena in many practical situations, such as cooling of electronic equipment by 
natural convection, thermal comfort in buildings, heat loss from solar collector and crystal 
growth. RB Convection has been extensively investigated [1-8] inside box cavities and 
cylindrical containers because of the geometrical simplicity of the boundary conditions. Yang [2] 
analyzed laminar buoyant flows in confined enclosures heated from below and cooled up side 
while the horizontal sides are adiabatic. They found that the buoyancy forces generated by 
imposed condition drive a rising flow near these walls, independently of the Rayleigh number. 
However, a pure conductive regime is dominant until the critical Rayleigh number is reached. 
Then the convective patterns starts independently of the final supercritical Rayleigh number. 
Thus, they concluded a competition of buoyancy forces generated near side walls against those  
In the present work, the governing equations for a Boussinesq fluid of Prandtl number Pr = 0.71 
are solved numerically in a curvilinear cavities of aspect ratios 1 ≤ Lx ≤ 5, 1 ≤ Ly ≤ 10. cavities 
are heated upside and symmetrically cooled from curved sides while a linear time dependent 
Rayleigh number Ra function is considered. The space-time evolution of temperature, stream 
function depending on the Rayleigh numbers and the cavities aspect ratios are shown.  

2. Mathematical Formulation 

The top wall, is prescribed by positive heat flux q1, while the curved walls are prescribed by 
output heat flux q2. The 2-D natural convection flows are assumed to be unsteady and laminar. 
Consider a curvilinear cavity of height Ly and length 2Lx filled with a Boussinesq fluid of Prandtl 
number Pr = 0.71 ( Figure 1). The Boussinesq approximation is adopted and the equations 
representing the conversation of momentum, mass and energy for unsteady motion can be written 
in stream function-vorticity form as: 
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Figure 1: Physical model and coordinates system 
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with (X, Y)  (x, y) / Ly= , (U, V)  (u, v) / (  / L )yα= ,   (T -T ) / TcΘ = ∆ , 2t  t'  / L  yα=   (4) 

No-slip condition is applied to the velocity Boundary Conditions (BCs) for all the walls, the 
corresponding (BCs) are:     

At 
  

Y  0, -   X  , -  ltp ,    0x x  Y  Y

∂ Θ ∂ Ψ
= Γ ≤ ≤ Γ = Ψ = =

∂ ∂
       (5)  

For -   X  x xΓ ≤ ≤ Γ , 
 Θ2 0  Y  Γ , Ψ 0, ξ  -  Ψ,  1y  n

∂
< ≤ = = ∇ =

∂
      (6) 

Where ltp is a linear time profile. The dimensionless heat transfer across the fluid is presented by 
the overall Nusselt number < Nu > which is computed, at each boundary, averaging the 
corresponding local Nusselt number Nu, defined at any point of the physical domain by: 

X

 
Nu  = U  - 

 X

∂ Θ
Θ

∂
 and 

 
Nu  = V  - Y  Y

∂ Θ
Θ

∂
       (7) 

The numerical computation of the non dimensional heat flux has been performed integrating the 
local Nusselt number, at each boundary area. The integrals are approximated by the trapezoidal 
rule. The heating is a monotonic function of time which is introduced into the governing 
equations by means of a time dependent Rayleigh number Ra(t) . In order to simulate as closely 
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as possible a real experiment, the calculation starts with a linear temperature profile between hot 
and cold wall and the fluid at rest. 

At  0  Ra(t)      ; ltp  Y) Θ(X,     ; 0  Y) V(X,  Y)       U(X,0t =====     (8)    

3. Numerical procedure 

The equations were solved by solved using the FLEXPDE software. To ensure accurate results, 
non-uniform meshes of 31×31, 51×31, 71×31 and 31×51 have been employed. Time step ∆τ used 
in calculation varied between 0.1 and 0.01 which require around 100 time steps to 600 time steps 
for a steady state solution.  To ensure convergence at each time step, the iterative process starts 
from an arbitrary vorticity field, the stream function is found from equation (2) and the velocity 
field and the vorticity at the walls are calculated. The energy equation (3) is solved and the 
vorticity discretized equation coefficients calculated with corresponding residual being 
determined when the tolerance of 10-5 is obtained. The Nusselt number is calculated from the 
temperature and velocity field obtained at the end of the iterative process. 

4. Results and discussion 

At low Rayleigh number (Ra = 103), the flow and thermal fields correspond to the pure 
conduction. The convection is very weak and the flow pattern consists of unicellular streamlines 
with ≈Ψ  max 8.53 (figure 2). As time progresses, the Rayleigh number increases and the 

convective heat transfer becomes more important at supercritical Rayleigh number Ra = 105. The  
flow tends to occupy more uniformly the whole cavity, as the center of cell moves steadily 
towards the cooled wall. However, the isotherms do not reach the cavity right side not even for 
the maximum value of Rayleigh number (Ra = 106). On the other hand, two rotating rolls with an 
ascending flow between them are found. Figure 3 shows the overall Nusselt number < Nu > at the 
top heated boundary plotted against time. In the transient part of this graph there is an almost 
fixed region where < Nu > = 1 indicating a pure conductive thermal regime which starts at 
approximately the same point for all Ra with the exception of the case Ra = 103 (large extended 
pure conductive regime). The influence of the Rayleigh number and the ratio Lx / Ly on the 
average Nusselt number is shown in Figure 4. One can notice that the law < Nu > ≈ Ra1/4 is 
observed for Ra ≥ 105, irrespective of the ratio Lx / Ly. For pure conduction, it may be noticed 
how the Nusselt number varies in a way close to the inverse of ratio ( < Nu > ≈ (Lx / Ly)-1 ). It is 
almost invariant for Ra = 104 and increases for Ra > 104, where it varies close to (Lx / Ly)1/4 for 
Ra = 106. Figure 5 shows isotherms and streamlines for Lx / Ly = 0.25, 0.5, 2, 4 and 5. the flow 
pattern consists of a counterclockwise cell. It may be noticed that, for all cases, the center of the 
cell migrates from the heated side to the cooled side when the Rayleigh number increases. For the 
isotherms, the temperature gradient increases monotonically in the X- direction, and consequently 
the increase of the circulation, the heated fluid returning after changing its direction tends to fill 
the whole part of the cavity enhancing the temperature gradient near the cooled wall.  

5. Conclusion 

A study of Rayleigh-Bénard convection in curvilinear cavity heated upside and symmetrically 
cooled from curvilinear sides has been studied numerically for arrange of values of the aspect 
ratio Lx / Ly.  For all Rayleigh number, two single roll structures are found. In these ranges of 
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Rayleigh numbers, transitions between conductive to convective laminar flow structures are 
observed. At high Rayleigh numbers (Ra = 106), for all aspect ratio cavities, time-average vortex 
ring structures near horizontal and curved walls are found. The recirculation of instantaneous 
large-scale persistent vertical currents, occurring near the sidewalls, is producing these structures. 
It can be seen that the effect of the Lx / Ly ratio on the Nusselt number and the maximum stream 
function value increases with the Rayleigh number.  
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Figure 2: Temporal evolution of the stream function in a curvilinear cavity. Lx / Ly =1. (a) Ra = 
103, t = 15 min, ≈Ψ  max  8.53.  (b) Ra = 106, t = 150 min, ≈Ψ  max 7.31.  
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Figure 3: Overall Nusselt number < Nu >   Figure 4 : Overall Nusselt number < Nu >  
as a function of time t inside the cavity   versus the aspect ratio 
Lx / Ly = 1  
 

 

 

Figure 5: Steady state isotherms (left) and streamlines (right) for a Rayleigh number Ra = 106 
inside cavity with different aspect ratios. Lx / Ly = 0.2 
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