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ABSTRACT 

Numerical analysis of one-dimensional transient solidification and melting of a slab with an 
uniform volumetric energy generation presented. A fully implicit finite difference method is used to 
resolve the dimensionless energy equations in each case. The effect of the dimensionless heat 
generation coefficient on the dimensionless temperature in both fields and interface location is 
presented. For the melting case, the evolution of the total melting time is also exposed.  
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NOMENCLATURE 
C Specific heat, J/kg 

°C 
t Time, s 

 h Latent heat of 
fusion, J.kg-1 

T Temperature, 
°C 

 k Thermal 
conductivity, 
W/m°C 

Tf Fusion 
temperature, °C

L Thickness of the 
slab, m 

T0 Surface 
temperature, °C

Q Volumetric heat 
generation, W/m3 

x Spatial 
variable, m 

St Stefan number   
 
 

Greek Symbols 
α  Thermal Diffusivity, m2.s-1 

β  Dimensionless heat generation 
coefficient 

θ  Dimensionless temperature 
τ  Dimensionless time  

0τ  Total melting time 
 
Subscripts 
 f Fusion 
i interface 
L Liquid 
 s Solid 

 
1. INTRODUCTION 
Transient heat-transfer problems involving melting or solidification are generally referred to as phase-change 
or moving boundary problems. Sometimes, they are referred to as Stefan problems, with reference to the 
pioneering work of Stefan around 1890. Phase change problems have numerous applications in such areas as 
the making of ice, the freezing of food, the solidification of metals in castings and recently new protective 
clothing are being developed that provide significant enhancements in thermal storage and comfort using 
encapsulated phase change materials. One of prospective of storing solar energy for example is the application 
of phase change materials (PCMs). In spite of the fact that a great attention has been done on phase change 
problems [1-4], few articles deal with the effect of volumetric heat generation on them. In the literature, there 
are few analytic solutions of this kind of problem because of the non-linearity of the phase change materials 
governing equations and other complicating factors. In compensation, numerous approximate analytical 
solutions exist [5-7]. Indeed, Jiji et al. [5] used a quasi-static one approach to study one dimensional 
solidification and melting of a slab with uniform energy generation. In the reference [6], a same approach valid 
for Stefan numbers less than, is employed to examine equations governing the motion of a phase change front 
for materials which generate internal heat in the case of cylindrical, spherical, plane wall and semi-infinite 
geometries. Kalaiselvam et al. [7] analyzed an experimental and analytical investigation of solidification and 
melting characteristics of PCMs inside cylindrical encapsulation. Chan et al. [1] described a phase change 
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model where internal melting was introduced by radiative transfer in semi-transparent materials. Chan and Hsu 
[8] used finite difference techniques and the enthalpy method to study the phase change of materials with 
internal heat generation, specifically the mushy zone of along the interface. 

The present work concentrates on the effect of a uniform volumetric energy generation on one-dimensional 
transient solidification and melting Phase Change Material (PCM). 

 
2. HYOTHESES 
Numerous hypotheses were made to simplify the present analysis (solidification and melting). It was assumed 
that the phase change occurred at a single fusion temperature, which enabled us to model the phase change 
front as sharp boundary between the solid and liquid phases. It was also assumed that there was no convection 
heat transfer in the liquid, so that heat is transferred solely by conduction. Finally, it was assumed that the 
volumetric heat generation was constant, uniform, and equal in the both phases. 

 
3. SOLIDIFICATION ANALYSIS 
The phase solidification of a slab of finite thickness L is considered (figure 1). It is initially at the temperature 

iT  which is above the fusion temperature
fT

. The surface 0=x  is suddenly maintained at fTT <0  whereas the 
surface Lx =  is insulated. Simultaneously, energy is generated throughout the system at constant volumetric 
rate q. A solid-liquid interface forms instantaneously at 0=x  and propagates through the liquid phase. The 
medium is assumed to be homogeneous and isotropic with constant and identical thermophysical properties in 
both phases and the motion of the liquid phase is neglected.  

 

 
 

Figure 1. Physical model and coordinates system. 
 

The following dimensionless variables [5; 9] are used: 
• in the solid phase, xix ≤≤0 :  
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The dimensionless energy equations in both phases are given by: 
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The following dimensionless interface energy balance will be used to develop the differential equation 
governing the motion of the phase change front.  
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The dimensionless initial and boundary conditions are respectively: 
• initialL θηθ =)0,( ,  0)0( =xi        (5a-b) 
• At the wall, 0=η : 0),0( =τθ s         (6a) 
• At the solid-liquid interface, 1=η : 1),1(),1( == τθτθ LS      (6b) 

• At the insulated wall, 2=η : 0=
∂η
∂θ L         (6c) 

 
4. MELTING ANALYSIS 
The identical problem with the material initially solid is considered. The surface at 0=x  is suddenly exposed 
to a temperature 0T  which is higher than the phase change temperature ( fTT >0 ). Melting of PCM starts from 
the previous surface and the interface moves towards the right side of the system. Because of the temperature 
rise and the presence of heat generation, solid phase will result in partial melting and hence solid-liquid region 
is formed instead of the solid phase. It assumed that the mixture forms immediately and the temperature of the 
solid phase increases instantaneously to the melting temperature. Mixture will be in its fusion temperature but 
the proportion of the liquid in the mixture rises due to heat generation and sensible heat addition from the 
warm surface. In the dimensionless formulation, the heat equation for the liquid phase is given by: 
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where: 
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x
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The dimensionless initial and boundary conditions include respectively:  
• initialL θηθ =)0,(  0)0( =xi         (8a-b) 
• At the wall, 0=η : 0),0( =τθ L         (9a) 
• At the solid-liquid interface, 1=η : 1),1( =τθ L       (9b) 

Assuming no heat is transferred through the mixture by conduction and in taking into account the conservation 
energy of the mixture, the interface energy equation is modified with an addition of a factor βτγ =  which 

defines the mass proportion of liquid in the mixture [5, 7]: 
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5. SOLUTIONS METHODS 
A fully implicit finite difference method is used to resolve the dimensionless energy equations of solidification 
and melting (3a-b and 7). Spatial and temporal grids are chosen to be uniform. Dimensionless discretised 
energy equations form a tridiagonal matrix which can be efficiently solved by the TDMA algorithm. Next, the 
interface location xi  is numerically determined by using the dimensionless interface energy balances (4 and 
10) and the secant method.  
 
6. RESULTS AND DISCUSSION 
 
6.1 Solidification 
The thermophysical properties used here are those of a slab of nuclear material UAIx [5] and the Stefan number 
is 09133.0=St . The parameter values, to which this computation is performed, are mentioned in the figure 
captions in particular β=0.0; 0.8; 1.6; 2; 5.0 and 10.0.  
The results present the dependence of the interface position and temperature profiles on the scaled heat 
generation coefficient β. Then; figure 2 depicts transient distributions of the dimensionless temperature in both 
fields. It is seen from this figure that the discontinuity in the temperature gradient at the interface disappears 
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when the parameter β becomes higher. Furthermore, the temperature rises monotonously and depends on the 
parameter β. This augmentation is less important for 20 ≤≤ β  than the case where 102 ≤≤ β . On the other 
hand, the effect of the dimensionless heat generation on the temporal evolution of the interface position is 
presented in the figure 3. We note that increasing heat generation provokes the slow motion of the interface 
position and for 2>β  the steady state solidification takes place. From the steady state interface position  

∞
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⎠
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⎜
⎝
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L
xi  (figure 4) we can see that the solidification is total in the first region 1 ( 1≈⎟

⎠
⎞

⎜
⎝
⎛

∞L
xi ) whereas it’s partial 

in the region 2 (
∞
⎟
⎠
⎞

⎜
⎝
⎛

L
xi <1). These results are in good agreement with those of the reference [5]. According to 

this later reference, the special case of 2=β  corresponds to a unique value of energy generation for which the 
study state interface is at the insulated surface. In this case the insulated surface is at the fusion temperature. 
 
6.2 Melting 
Now let us consider the melting case where a slab of ice with the Stefan number 1007.0=St  is studied [5]. 
This case is characterized by a pure liquid phase and a solid-liquid mixture at the fusion temperature. Unlike 
solidification, both surface heat transfer and heat generation affect the total melting time. So, the effect of 
dimensionless heat generation β on the transient interface position is illustrated in figure 5. It is seen that an 
increase in this parameter accelerates melting and shortens total melting time τtotal melting. This fact is also 
highlighted in figure 6 which shows that the total melting time for the case of no energy generation is 

5.0melting total =τ . This value decreases in increasing the dimensionless heat generation β.  
 

5. CONCLUSION 
One-dimensional transient solidification and melting of a PCM with volumetric heat generation has 
numerically been studied for the Stefan number less than one. Differential equations modelling the motion of 
the phase change front have been derived. Both solidification and melting solutions are governed by the 
dimensionless heat generation β.  
To better understand the behavior of a phase change material front in a material, this study can be extended to 
account for solid phase properties that differ from the liquid phase and the model can also be applied to 
variable heat generation. 
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Figure 2: Dimensionless temperature distribution in both fields. 
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Figure 3: Dependence of the interface position on the scaled heat generation coefficient. 

0 2 4 6 8 10 12 14 16
0,0

0,2

0,4

0,6

0,8

1,0

Region 2: Partial solidification

Re
gi

on
 1

: T
ot

al
 so

lid
ifi

ca
tio

n

(xi/L)
∝

β

 
Figure 4: Effect of the heat generation on the phase change problem. 
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Figure 5: Influence of the dimensionless heat generation on the transient interface position. 
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Figure 6 : Energie generation effect on total melting. 


