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ABSTRACT: Wherever effective heat transfer area and global heat transfer coefficients are not 
known precisely, and they seldom are, heat exchanger inventory can be analyzed in terms of heat 
conductance instead of heat transfer area. Power optimization in endoreversible cycles and cascades 
consists in optimally allocating a fixed temperature potential between power production and heat 
transfer processes for a given heat conductance inventory. Solutions of these problems have been 
shown to allocate the available heat conductance equally among the heat exchangers with a 
Newtonian heat transfer law. This remarkable property is here generalized by means of an electrical 
analogy for endoreversible cycles and power cascades. It is shown that this method of solution 
establishes the equal distribution of heat conductance in all heat exchangers as a general rule to 
greatly simplify the analysis and the solution of endoreversible cycles and cascades of such cycles. 
 
RESUME : Lorsque les surfaces et les coefficients d’échange ne sont connus séparément que de 
façon approximative, comme ils le sont pratiquement toujours, les inventaires de surfaces d’échange 
peuvent être analysés en termes de conductance thermique. L’optimisation de la puissance des 
cycles endoréversibles et cascades de tels cycles consiste à allouer de façon optimale le potentiel de 
température donné entre la production de puissance et les transferts thermiques pour une 
conductance thermique spécifiée. Les solutions de ces problèmes montrent qu’à l’optimum, la 
conductance thermique totale est répartie également entre les échangeurs pour un modèle de  
transfert newtonien. Cette propriété remarquable est ici généralisée au moyen d’une analogie 
électrique pour les cycles endoreversibles et les cascade de puissance. On montre que cette méthode 
de solution généralise l’équipartion de la conductance globale entre les échangeurs simplifiant ainsi 
de façon remarquable l’analyse et la solution des problèmes d’optimisation des cycles 
endoréversibles et les cascades de puissance de tels cycles. 
 
KEYWORDS: F.T.T., maximum power cascade, endoreversible cycles, heat conductance 
allocation. 
 
NOMENCLATURE: SI units 
A   heat exchanger area        (m2)          Tce1   top cycle lower isotherm            (K) 
Cc  condenser thermal conductance ≡ (UA)c     (W/K)       Tce2   bottom cycle upper isotherm      (K 
Ch  boiler thermal conductance ≡ (UA)h            (W/K)       Th     hot source isotherm,                   (K) 
CT  cycle overall thermal conductance ≡(UA)T, (W/K)       Thc    simple cycle boiler isotherm      (K) 

   mechanical power                           (W)           Thc1   top cycle boiler isotherm           (K) 
h  boiler heat rate         (W)           Thc2   bottom cycle boiler isotherm     (K)  
c  condenser heat rate        (W)            U      heat transfer coefficient   (W/m2.K) 
I  intermediate heat exchanger heat rate      (K)            η       cycle or cascade efficiency 

Th   hot source isotherm        (K)            ηC-A   maximum power efficiency 
Tce simple cycle condenser isotherm                  (K) 
 
1. INTRODUCTION  
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Several optimal solutions have been reported en recent years regarding endoreversible power and 
refrigeration cycles, including those of Bejan [1, 2, 3], which consider an overall heat transfer 
conductance to be allocated between a heat source and a sink. Some elaborate algebra had to be 
used by the authors to obtain an analytical solution to the extremum of the non constrained 
objective function because of the non linear, coupled necessary condition equations. The optimal 
heat conductance allocation arrived at is an equipartition, both in the maximum power cycle as well 
as in the refrigeration cycles. The maximum power solution is then worked out as proportional to 
one fourth of the overall heat transfer conductance. 
Similarly, in his thermoelectric generator analogy, Gordon [4] expresses the maximum obtainable 
power as proportional to one fourth of the total conductance allocated to the two dissimilar material 
branches connected in parallel between the reservoirs temperatures Th and Tc. 
Considering two stage combined refrigeration cycles, endoreversible and irreversible, with constant 
temperature differences and a total heat transfer area some authors [5, 6] gave results which are 
consistent, although not explicitly expressed as such, with the equal distribution of the given heat 
transfer conductance among the three heat exchangers, i.e. one third for each exchanger when a 
unique overall heat transfer coefficient is adopted. 
Power cascades are a useful concept to consider for the purpose of regasefying LNG while 
producing mechanical power [7]. To maximize the cascade potential power amounts to distributing 
optimally the total available temperature potential and the heat transfer inventory between heat 
transfer and power production processes.  
These results suggest that some generalized rule for optimal heat conductance allocation could be 
obtained by means of an electrical analogy adapted from the maximum power transfer theorem of 
electronics [8]. This rule says that in an electrical circuit comprising a signal generator and a signal 
receiver, the signal intensity received achieves a maximum when the impedances of the generator 
and receiver are equal. That is, in such a circuit, the signal reaches a maximum value when the two 
impedances fed in parallel are equal; in this instance the total conductance is the sum of the two 
parts. Under similar conditions, an endoreversible cycle defined with a constrained thermal 
conductance to be allocated between the heat source and the sink can be considered as the thermal 
analog of this electric circuit in which conductances are arranged in series. 
 

2. PROBLEM DEFINITION 

A simple electrical analog is represented in figure 2 for the endoreversible power cycle of figure 1 
where heat source and sink have infinite thermal capacities; constant temperature differences are 
necessary assumptions for the electrical analogy with single value voltages. The maximum power 
problem definition for an endoreversible cycle is then formulated as follows. 

 
Max  h - c           (1) 
Subject to the following constraints:          
 

h/Thc - c/Tce=0           (2) 
h/(Th-Thc) + c/(Tce-Tc)=CT          (3) 

 
This optimization problem is seen to be defined in terms of four unknowns: the two heat rates, h -

c and the two fluid isotherms Thc and Tce .While the cycle is endoreversible, the entropy flux is 
not constant since entropy is generated during heat transfer. 
The proposition is made here that in an endoreversible cycle connected to the external heat source 
and sink temperatures, respectively Th and Tc, power is maximized when the total conductance CT  
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composed of the individual conductances in series is maximized; this situation corresponds to the 
overall equivalent thermal resistance being minimized. 
However, the total available temperature potential (Th –Tc) between the heat source and the heat 
sink remains to be allocated between power production and heat transfer processes; the temperature 
power potential (Thc-Tce) is considered to be the analog of a counter electromotive force (c.e.m.f) 
achieved by an electrical generator. Because these processes of heat transfer and power production 
are seen to be uncoupled, a solution by an electrical analogy is proposed, where the optimal 
allocation heat conductance is solved first, then the maximum power production is addressed next 
in a much simplified and straight forward approach. Previous work shows that solving this 
maximum power problem with Lagrangian methods becomes cumbersome often eluding explicit 
solutions, compared to the simplicity provided by the electric analog method proposed here. 
 
3. ELECTRICAL ANALOGY 
The electrical analogy considered in figure 2 is for an endoreversible power cycle for which the 
source temperature is Th and the sink temperature Tc. The source supplies h=Ch(Th-Thc) and the 
heat sink receives c=Cc(Tce-Tc). The analogy is based on the conservation of electrical current. 
The endoreversible power cycle between temperatures Thc and Tce is modeled with a current  

 
generator which delivers h - c counter clockwise; the net current in the circuit is clockwise and 
equal to c. The electrical current flows from port Th to port Tc, through the resistors in series, Rh in 
the left circuit and Rc in the right circuit. Increasing Rc would decrease the current and increase the 
voltage across Rc, thus decreasing the power dissipated by Joule effect. Conversely, decreasing Rc 
would increase the current intensity and decrease the voltage across Rc. A certain value Rc with 
respect to Rh will result in a maximum power dissipation in Rc. In such a circuit, the maximum 
power dissipated in Rc occurs when Rh equals Rc. This situation is desired in electronics when it is 
necessary to transfer maximum power through matched internal and external impedances. 
Given a voltage source analog to ΔT, the power delivered by this source to the circuit is equal to the 
voltage ΔT squared divided by the total resistance of the circuit. For the case where two resistances 
are in series, Rh and Rc, the sum of which is R, the maximum power problem is defined as: 

      
Max = (∆T)2/R=(∆T)2[1/Cc+1/(CT-Cc)]-1        (4) 

 
The total equivalent resistance R is equal to the sum of the inverse conductances; maximizing the 
power amounts to minimizing the sum of the inverse conductances of equation (4) with respect to 
Cc. Applying the necessary and sufficient conditions for the existence of a minimum, it can be  
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Figure 2: Thermal-electrical analog of the 
maximum electric power transfer theorem 
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shown that maximum power is achieved when the total available conductance CT is distributed 
equally among Cc and Ch. 
 
Cc=Ch=CT/2            (5) 

 
This result is easily extended to any number of resistances in series in an electrical circuit. In the 
case of a two endoirréversible cycle power cascade, the diagrams of which are given in figures 3 
and 4, there are three conductances in series the sum of which is CT; the optimal conductance 
allocation is achieved when each conductance is equal to one third of the given conductance CT. 
The maximum power actually to be achieved will depend on the applicable temperature potential 
ΔT. Power maximization with respect to fluid cycle isotherms is addressed next using the equal 
partition of heat conductance rule obtained here by analogy. 

 
4. MAXIMUM POWER OF AN ENDOREVERSIBLE CYCLE 
Revisiting the known solution of this problem [1] illustrates the method of solution presented here. 
Using the optimal heat transfer conductance allocation obtained above, the maximization problem 
consists in maximizing h - c. But the power can now be simply expressed as: 

 
= (CT/2)[(Th-Thc) –(Tce –Tc)]= (CT/2)[(Th+Tc)–(Thc +Tce)]     (7) 

 
Maximizing  amounts to minimizing the sum (Thc+Tce) subject to the reversibility constraint. This 
minimization problem is then defined by: 
 
Min φ ≡ Thc + Tce 
s.t.  Th/Thc + Tc/Tce=2           (8) 
 
After substitution into the objective function for Tce and applying the necessary condition for an 
extremum with respect to Thc, one obtains the optimum fluid cycle top isotherm: 
 
Thc=Tc R(R+1)/2           (9) 
 
Where R is defined by the heat source and sink square root temperature ratio: 
 
R≡(Th/Tc)1/2            (10) 
 
Replacing in the constraint, one obtains the optimum fluid cycle bottom isotherm: 
 
Tce=Tc (R+1)/2           (11) 
 
From these one obtains the maximum power and the corresponding efficiency: 
 
Pmax=(CT/4) Tc(R-1)2           (12) 
 
ηPmax=1 -1/R            (13) 
 
We now turn to the solution of a power cascade made of two endoreversible cycles. 
 
5. MAXIMUM POWER OF A TWO ENDOREVERSIBLE CYCLE CASCADE 
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Figure 3 is an electrical analog of the power cascade made of two endoreversible cycles of figure 4. 
Here we seek to maximize the power P of a two endoreversible cycle cascade with respect to the 
cascade isotherms Thc1, Tce1, Thc2, Tce2. Using the equal heat conductance allocation among the three 
heat exchangers, Ch=Ci=Cc=CT/3, the cascade power is expressed by: 

  
= (CT/3) [(Th-Thc1) - (Tce2-Tc) = (CT/3)[(Th+Tc) - (Thc1+Tce2)     (14) 

 

 
 
Maximizing P amounts to minimizing the sum of the cascade external isotherms (Thc1+ Tce2) subject 
to the two constraints of endoreversibility. This minimization problem is then defined by: 
 
Min φ≡Thc1+Tce2 
Such that:Th/Thc1 + Thc1/Tce1=2 
Tce1/Thc2 + Tc/Tce2=2           (15) 
         
In this problem, there are four variables, Thc1, Tce1, Thc2, Tce2 and two constraints, hence two degrees 
of freedom. We solve the two constraints for Thc1 and Tce2 and replace them in the objective 
function; we obtain a non constrained objective in terms of the ratio Tce1/Thc2. 
Applying the necessary conditions with respect to Tce1 and Thc2 yields the same equation in terms of 
the ratio Tce1/Thc2 which is obtained as: 
 
Tce1/Thc2= (2R+1)/(R+2)          (16) 
 
Using the two constraints (15) and this result, one obtains the cascade external isotherms Thc1 and 
Tce2, the maximum power and the corresponding efficiency of the cascade. 
 
Thc1=(Tc/3)R(2R+1)                   (17-1) 
Tce2=(Tc/3)(R+2)                   (17-2)
      
The optimum cascade heat rates, maximum power and corresponding efficiency are, respectively: 
 

h= (CT/3)[(Th-Thc1)= R(R-1).(CT.Tc)/9        (18) 
c= (CT/3)[(Tce2-Tc)= (R-1).(CT.Tc)/9        (19) 
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Figure 3: Electrical analog of a two 
endoreversible cycle power cascade  
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max= h - c= (R-1)2.(CT.Tc)/9         (20) 
ηPmax≡ max/ h=1 -1/R          (21) 
             
These results are remarkable in the sense that the maximum power cascade efficiency is the same as 
that of a simple endoreversible cycle at maximum power. It is determined by solely by equation 
(21). This can be considered as a generalization of the Curzon-Ahlborn [9] maximum power 
efficiency. However, maximum power of a two cycle cascade is reduced to four ninths of that of the  
simple cycle. The following optimality rules give the cascade efficiency and maximum power for 
any number of endoreversible cycles by simple inspection:  
A. At maximum power, the efficiency of a cascade of any number of endoreversible cycles with 
heat source and sink temperatures Th and Tc; is that of Curzon-Ahlborn, that is: ηPmax =1 -1/R 
B. The maximum power of a cascade of N endoreversible cycles: Pmax=CT.TC(R-1)2/(N+1)2. It is 
reduced by the factor 4//(N+1)2 with respect to that of a single endoreversible cycle. 
 
6. CONCLUSION  
The electrical analogy of maximum power theorem is used in this work to simplify the analysis and 
mathematical solution of the maximum power of an endoreversible cycle or cascades of such cycles 
with a fixed heat transfer inventory. While known solutions of some of these problems have been 
arrived at with tedious algebra and lake of generalization, the method presented here uncouples the 
problem dependency on temperature and heat conductance and allows a simple unconstrained 
maximization solution. The proposed generalization rules say that maximum efficient of a cascade 
of any number of endoreversible cycles is the same as that of Curzon-Ahlborn efficiency of an 
endoreversible cycle, but its power per unit conductance is reduced by a known decreasing factor of 
the number of cycles. From these results, power cascades efficiencies for LNG regaseification are 
expected to be in the 25-30% range, slightly below simple gas turbine cycle efficiencies. 
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