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ABSTRACT 

The purpose of this work is to investigate the entropy generation in a conducting fluid 
flowing along an inclined heated plate in the presence of a magnetic field. The upper surface of the 
liquid film is considered free and adiabatic. Velocity and temperature profiles are obtained and used 
to compute the entropy generation number profiles. The effects of the applied magnetic field and its 
inclination on entropy generation are examined. 
Keywords: Entropy, Inclined plate, Liquid film, Magnetic field, Thermodynamic analysis. 
 
NOMENCLATURE 
a  thermal diffusivity (m2.s-1) 
B
r

 magnetic field (T) 

Br  Brinkman number 
PC  specific heat (J.kg-1.K-1) 

g  gravitational acceleration (m.s-2) 

Pe  Peclet number 
q  wall heat flux (W.m-2) 

GS  entropy generation rate (W.m-3.K-1)  
T  temperature (K) 
u  axial velocity (m.s-1) 
U  dimensionless axial velocity  
x  axial distance (m) 
X  dimensionless axial distance 
y  transverse distance (m) 
Y  dimensionless transverse distance 

Greek symbols 
α  magnetic field inclination (rad) 
δ  liquid film thickness (m) 

TΔ  reference temperature difference 
μ  dynamic viscosity (kg.m-1.s-1) 
λ  thermal conductivity (W.m-1.K-1) 
θ   inclination angle of the plate (rad) 
Θ  dimensionless temperature 
Ω  dimensionless temperature difference, 

0TTΔ  

ρ  density of the fluid (kg.m-3) 
Subscripts 
b  bulk value 
m  maximum value 
0  reference value 

1. INTRODUCTION 
Entropy generation is closely associated with thermodynamic irreversibility, which is 

encountered in all heat transfer processes. Different sources are responsible for generation of 
entropy such as heat transfer and viscous dissipation [1, 2]. The analysis of entropy generation rate 
in a circular duct with imposed heat flux at the wall and its extension to determine the optimum 
Reynolds number as function of the Prandtl number and the duty parameter were presented by 
Bejan [2, 3]. Sahin [4] introduced the second law analysis to a viscous fluid in circular duct with 
isothermal boundary conditions. 

In another paper, Sahin [5] presented the effect of variable viscosity on entropy generation 
rate for heated circular duct. A comparative study of entropy generation rate inside duct of different 
shapes and the determination of the optimum duct shape subjected to isothermal boundary condition 
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were done by Sahin [6]. Narusawa [7] gave an analytical and numerical analysis of the second law 
for flow and heat transfer inside a rectangular duct. In a more recent paper, Mahmud and Fraser [8, 
9] applied the second law analysis to fundamental convective heat transfer problems and to non-
Newtonian fluid flow through channel made of two parallel plates. The study of entropy generation 
in a falling liquid film along an inclined heated plate was carried out by Saouli and Aïboud-Saouli 
[10]. As far as the effect of a magnetic field on the entropy generation is concerned, Mahmud et al. 
[11] studied the case of mixed convection in a channel.  

The purpose of this article is to analyze the effect of the inclination of the magnetic field on 
the entropy generation in a fully developed liquid film flowing along an inclined heated plate. 
Expressions for dimensionless velocity and temperature, entropy generation number obtained. 

 
2. PROBLEM FORMULATION AND ANALYSIS 

The problem concerns a fully developed Newtonian, laminar, liquid film flowing along an 
inclined heated plate in the presence of a transverse uniform magnetic field B

r
 having an inclination 

α with the axial axis. The magnetic Reynolds number is assumed to be small, so that the induced 
magnetic field is neglected and the Hall effect of magnetohydrodynamics is ignored. Neglecting the 
inertia terms in the momentum equation compared to the body force and the magnetic term, the 
momentum equation is then: 
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subjected to the following boundary conditions: 
No-slip condition                                  0)0( =u                                                                                 (2a) 

Free surface                                        0)(
=

∂
∂

y
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The velocity profile is obtained by integrating Equation 1 and using the boundary conditions given 
by Equation 2. It may be written:  

( )

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−=

μ
σαδ

δ
μ
σα

ασ

ρ

sinBcosh

)y(sinBcosh

sinB

sinθgyu 1
22

                                                                                      (3) 

Introducing the following dimensionless variables for the velocity and the transverse 

distance
mu
yuYU )()( = , 

δ
yY = , the dimensionless velocity becomes: 
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where Ha  is the Hartmann number defined as: 
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Using the following dimensionless variables: 

2δmu
axX = , 

δ
yY = ,  ( ) ( )

mu
yuYU = , ( ) ( )

T
TyxT

YX
Δ

−
=Θ 0,

,                                                                          (6)                    

where TΔ  is a reference temperature difference defined as: 

λ
δqT =Δ                                                                                                                                               (7) 

The energy equation can be written in the following dimensionless form: 



14èmesJournées Internationales de Thermiques                                                                JITH2009 
27-29 Mars, 2009, Djerba, Tunisie 

( ) ( ) )Y(UsinBrHa
Y

Y,X
X

Y,X)Y(U 222
2

2
αΘΘ

+
∂

∂
=

∂
∂                                                                                   (8) 

subjected to the following boundary conditions:  
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where 2C  and C  are constants of integration. 
Using the boundary conditions (9), it is found that: 
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In the above expression 1A , 2A , 1B  and 2B  can be defined by: 
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The boundary conditions defined by Equation 9 leads the following condition on the bulk mean 
temperature: 

( ) 00 =Θb                                                                                                                                            (13) 
Substituting Equation 10 in Equation 13 and using Equation 9, the constant of integration is then:  
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where  α
μ
σδ sinBaH =′  

According to Woods [13], the entropy generation rate for the present case is: 
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The dimensionless entropy generation number is defined by the following relationship: 
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using the dimensionless velocity and temperature, Equation 22 can be rewritten as: 
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where Pe and Ω  are respectively the Peclet number and the dimensionless temperature difference. 

CN  and YN , are respectively the entropy generation numbers due to the conductive heat in the axial 
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and the transverse directions. FN  is the entropy generation number due to the fluid friction and BN  
is the entropy generation due to the magnetic effect. 
 
3. RESULTS AND DISCUSSION 
          The effect of the Hartmann number Ha  on the spatial distribution of the entropy generation 
number is plotted in Figure 1. As the Hartmann number increases the entropy generation number 
increases in the transverse direction and the apparition of minimums near the heated plate becomes 
clear. The entropy generation number does not become nil at the upper surface of the liquid film 
although it is free and adiabatic. This is because the application of the magnetic field creates 
additional entropy at the upper surface. 

 
 
          
 
 
 
 
 
 
 
 
 

         Figure 1. Effect of the Hartman number.                          Figure 2. Effect of the Brinkman number. 
 
 

Figure 2 illustrates the effect of the Brinkman number Br  on the spatial distribution of the 
entropy generation number. For a given transverse position, the entropy generation number is 
higher for higher Brinkman number. In all cases the heated plate acts as a strong concentrator of 
irreversibility. 

           
 
 
 
 
 
 
 
 
 
 
 
 

        Figure 3. Effect of the dimensionless group.      Figure 4. Effect of the magnetic field inclination. 
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The effect of the group parameters 1−ΩBr  on the spatial entropy generation number is 
depicted in Figure 3. An inspection on this plot reveals that the entropy generation number presents 
minimums near the heated plate. For a given transverse position, the entropy generation number is 
higher for higher group parameter. The effect of the magnetic field inclination on the entropy 
generation number is illustrated in figure 4. As it can be seen, the higher the inclination of the 
magnetic field, the higher is the entropy generation number. 
 
4. CONCLUSION 
          This paper presents the application of the second law analysis of thermodynamics to a falling 
liquid film along an inclined heated plate in the presence of an inclined magnetic field. The effects 
of the Hartmann number, Brinkman number, the group parameter and the inclination of the 
magnetic field entropy generation number are discussed. 
From the results the following conclusions could be drawn: 
a) The entropy generation number increases as Brinkman number increases. 
b) The entropy generation number increases as Hartmann or the group parameter increases. 
c) The entropy generation number increases as the magnetic field incraeses. 
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