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ABSTRACT

We present a 1D physical reaction-diffusion modaelfbrest fire propagation involving five free
boundaries and including several physical processesh as drying, heat convection, heat
conduction, and radiative transfer.

In this paper, we consider only the three firstegnust before the fire front. In these zones, the
thermal conductivity of the vegetal phase can basiered as constant. Using dimensional
analysis, it is shown that this thermal conducgiwan be considered as a small parameter. The rate
of spread and the drying zone can be obtainedpbastarbation expansion in this parameter.

The rate of spread for a flame model is calculaf®d.use Padé approximants to locate singularity
limiting the range of validity of the series sotutis for this model.

NOMENCLATURE

T vegetation temperature

Yo, mass density

A thermal conductivity

R chemical heat source including drying
M radiation heat source

h convection coefficient

T

oxt external temperature
Toyr pyrolysis temperature
Hy humidity
Huwo initial humidity
Ley evaporation latent heat
® porosity
Cs heat capacity of the solid constituent of vetjeta
Cu heat capacity of the water.
0 height of the vegetation
K extinction coefficient of the vegetation
B Stefan Boltzman’s constant
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& emissivity

T temperature of flame

h height of flame

w width of flame

T; temperature of the gaseous phase
Poxt extinction vegetation density

T; ignition temperature

lx,;,, XQVJ evaporation zone

To ambient temperature

u rate of spread

1. INTRODUCTION

The models of propagation of forest fires are di@sk in four principal groups: statistical,
geometric, empirical and physical models. The tasts are divided into two categories: detailed
and reduced models.

The reaction-diffusion model used here is a reduwedel and has a generic form:

,OC%—I = AT + R (0.T) ~h(T ~To) + M,

)
%
2= 1)

whereT is the vegetation temperature,s the mass densitg; is the heat capacity amtlis the
thermal conductivityR(p, T) is the chemical heat source including dryiNg,is a radiation heat
source,h is the convection coefficient anfl,, is an external temperature. The second equation
represents the variation of mass density becauseh@imical reactions. The parameters of the
models have a physical meaning but they shoulala¢ed to real physical parameters. This kind of
modelling assumes that the vegetation is a comimumedium. Furthermore, this system of
equations is set on a two-dimensional domain, atihahe vegetation lies in a three-dimensional
domain, and the fire front is recovered as the €U, y, t) = Tyyr, the temperatur@,,, being the
pyrolysis temperature.

The radiation fluxV, due to the presence of tall flames is a conseguehthe combustion in the
region of ambient air. That is, the process is l& three-dimensional process, contrary to the
assumption encountered in physical modelling. Oh¢he difficulties is the modelling of what
happens at the vegetal stratum level, but sevéfiatshave been done in this direction, cf. [1, 2,
3]. Moreover, a bridge between reaction-diffusioadels and detailed models has been obtained,
cf. [4].

In this paper we will address the question of thsspbility of modelling forest fires propagation
by a reaction-diffusion modeParagraph 2 is devoted to the presentation of suotiel; as the
drying is a complex process, a simplified versionhe model is considered. The last paragraph is
devoted to the analytical calculation of the ratespread. It is shown that the obtained rate of
spread is closed to the ones obtained experimgi€l!



1l4emedournées Internationales de Thermique JITH2009 JITH2009
27-29 Mars, 2009, Djerba, Tunisie

2.REACTION-DIFFUSION MODEL FOR FOREST FIRE PROPAGATIO N

It has been demonstrated that a 2D reaction ddfusnodel could be derived from a detailed
combustion model, cf. [4, 9]. The obtained systdraquations is of type (1). We may first suppose
that evaporation is at a constant temperafiyyeand neglect the heat absorbed by solid during
pyrolysis, so that the energy equation (1) redtces

oT oH
(1_ CD):O(CS +H UCW)E = AAT + h(Text _T) + pa—tu I-eva-T:Tev +M r (2)

In this relation, the symbad;_, ~stands for the Dirac distribution of the zohe T,, andH, is the

humidity or moisture content., is an evaporation latent hea, is the porosityC; is the heat
capacity of the solid constituent of vegetation &gk the heat capacity of the water.
For the radiation heat sourbg, we choose the model presented by De Mestad[10]:

42 Wh
M, =0K¢&; BTy —arcta
4 X W2 +h? + X2
whered is the height of the vegetatidq,its extinction coefficient anB is Stefan Boltzman’s
constants andT; are respectively the emissivity and the temperatfifiame,h, its height, andV

its width. X is the distance between a point of the vegetati@hthe flame.
Now the model can be summed up as follows:

3)

i) In the zone before the evaporation front, dedditg zone |, such thaf <T_, andp > p,,;,
oT
(A= ®)p(Cs +HuoCu) - = DHADT) + M, =h(T =T ) (4)

whereH ,, is the initial humidity, T; the temperature of the gaseous phase gpdhe extinction

vegetation density.

i) In the evaporation zone, denoted by zone Ithsthat: T =T,
oH
- Pley atu =M, - h(Tev_Tf) (5)

iii) In the intermediary zone between the evaporatzone and the burning zone, denoted by zone
ll, such that:T,, <T <T,, H, =0 and p = p,;,

H, >0 and o2 g,

@-®)pC, 2L = 0OT) +M, ~h(T -T,) 6)

T. is the ignition temperature.

iv) In the burning zone, denoted by zone IV, su@t:tT 2T,, H, =0 and p = g,
(1—(13),005(?3—-[:DEQ/1DT)+Mr -h(T-T;) (7)
The variation of mass due to chemical reactions is:

% (P1)= v, (PA-t)p(P.0) ®)

t, is the instant of ignition, and, characterizes the speed of the chemical reac@ue can

consider an Arrhenius law:
v, (P,t—t) = AexpE/RT) (9)
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whereE is the activation energy the prefactor an® the gas constant.
v) In the burnt zone, denoted by zone V, such ghatp,,;

a- d»)pextcsaa—f = OMADT) + M, —h(T -T,) (10)

All the preceding described regions are illustratefigure 1.

YA

T =T,
: IO = pext i p > pext
i : T =T,
| | T <T, | !
| ZoneV | ZomeIV ' N\H, > 0etT <T,,
i E Zone III E Zone 11 E Zone I

_ n >
Hu =0 Xev Xev

Figure 1. Different zones related to the spreading in omeedisional propagation; the evaporation
zone is the intervék;v, Xoy [ .

3. DETERMINATION OF THE RATE OF SPREAD

An interesting feature of the preceding simplifraddel is the possibility of deriving a system of
equations for the rate of spread. Let us considerthree first zones, just before the fire front. |
these zones, the thermal conductivity can be censitlas constant. Let us introduce the following
non-dimensional quantities, whefgis the ambient temperature:

— _T-T, = T~ T
T=0—= = et 1l.a
T e (11.2)
M, =M M, |, t:Mt—=n_ (11.b)
MO
In relations (11.b), coefficiemk is given byA= (1-®)po(C, +H ,,C,, )and there is a characteristic
A(TI _Too)

time 7 defined byr = . We also consider a characteristic lengtiWith these new

0

A(TI _Too)
12M,

values involvedV, = 5.2 kW/m, A =0.27W.m LK, T, = 300 °C, and’, = 27 °C. We thus obtain

variables, we obtain the following reduced therm@hductivity A = . For the physical
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0.0142
2

the following value for the reduced thermal conéliigt A = . Therefore, even if=0 (1)

A is a small parameter.
Let us consider a one-dimensional propagation witlonstant non-dimensional velocityin fact

. | _ : . . : . .
U withu =—u, whereu is the dimensional velocity). And let us look Bostationary wave solution
T

of the forml(x-ut), H,(x-ut); we obtain a non linear eigenvalue problem. Thkovong
boundary conditions and continuity conditions mhestadded:

TO=T;=1,T(0)=0 , T(X)=T(X")=T, (12)

. X o X, . . . . .
where X =% and X :% are the non dimensional variables defining thendrgone.

This non linear eigenvalue problem may have sewshltions, cf. [7]. But taking into account
thatd <<1, one can look for a solution as a series expangion Thus, the solution takes the
following form:

X" =x5+ A + 2% +... X7 =X5 + A + A5, +... (13ab)
T =Ty + AT, + AT, +... U= Uy +Auy + AU, +... (L3cd)

This calculation allows us to determine the evaponatone and the rate of spread according to

Let us notice that by the implicit function theorerh such solution exists, it is unique in the
vicinity of A =0. The detailed calculations of the expansion arergin [5].

The complexity of the expressions increases with diaer of the approximation. We use a
symbolic computation language to calculate the §even orders of the series (13) which are given
in the following table:

Table 1: Coefficients of the perturbation series relatd,tX ™~ and X " related to the model |

orders u X~ Xt
0 7.1518 2.4608 164.1169
1 - 0.4297 - 0.3200 -10.1115
2 0.0165 0.0196 0.3922
3 0.0025 0.0057 0.0625
4 -0.0182 4.5675e-004 -0.4122
5 -0.0144 - 0.0040 - 0.3300
6 0.0210 7.6727e-004 0.4770

The series (13) will converge to a limit onlyAflies within a circle whose radius is determined by
the location of the nearest singularity in the ctemp\-planeWe employ the method of Padé
approximants to locate it. The calculation of théepmf these approximants allows us to give an
approximated value of this singularity.

Herein we give poles of the sequence of Padé appamis h + |, n], (j =-1, 0, 1) applied to the
series (13.d)
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Table 2 Poles of Padé approximants relative to the ragp@ad

Padé table Poles Modules
P (5,1) - 0.69182 0.69182
P (4,2) 0.1738 £ 0.7703i 0.7897

P (3,3) 0.1728 + 0.7714i 0.7906

P (2,4) 0.1911 + 0.7478i 0.7719

P (1,5) - 0.8760 0.8760

The results show that there is a critical valueseltwA, = 0.77, above which the series (13) are not
convergentThis value coincides with the physical vallie= 0.0587.

It seems that this method is valid only for foresgjetation of thermal conductivity lower thag

One has to consider that for this flame modelctdeulated value of the rate of spread is veryeclos
to the ones obtained experimentally and by idexatiion [6].

4. CONCLUSION

A model of forest fire propagation including dryjrmgyrolysis, heat convection, heat conduction
and radiative transfer is presented. This modeldegsn obtained by asymptotic expansion and has
the generic form of system of reaction diffusiom@pns. One of the aims of the present work was
to link this type of reaction diffusion models tadels relying on the concept of rate of spread. The
rate of spread is defined as the solution of a oear eigenvalue problem. This solution is
obtained as a perturbation expansion in the headwiivity of the solid phase. Calculated rate of
spread for a flame model has been compared faviguvath experimental values (obtained by
thermocouples and by simple thermal sensor).

It has been demonstrated that the reaction-diffusiodels have a possible ability for helping in
the modelling of fighting. The leading effect foortrolling the fire is the pyrolysis process. The
influence of the activation energy must be studimd,other parameters of the pyrolysis law seem
to have a great influence on propagation.
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