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Abstract: The present study dealt with a numerical studyaafldie diffusive natural convection flow in a binary
fluid contained in a tilted square cavity under sssaemperature and concentration gradients. Thes,mas
momentum and energy conservation equations wekedaalumerically using a finite-difference methodheT
study was focused on the cavity tilted at an anfi5’, and when the thermal and solutal buoyancy fonere
equal. The Results are presented in terms of tamged Nusselt and Sherwood numbers, and the fl@nsity

as functions of the thermal Rayleigh and the Lemisnbers. The existence of the onset of convectiam w
demonstrated and both natural and anti-naturalsfle@lutions were obtained. Also, when the Lewis lpemis
bigger or smaller than unity, subcritical flows doaind to exist for natural convective solutionfeTcritical
values of the thermal Rayleigh number for the on$stupercritical and subcritical convection webtained.

Keywords. Square tilted cavity, Thermosolutal convection, $8rgradients of temperature and concentration,
Numerical study.

1.Introduction

Double diffusive natural convection pberenon in a confined fluid enclosure has receivatsiclerable
attention among researchers and scientists owingfstgracticality importance in geophysics and many
engineering processes and applications. The groatedveontamination, melting and solidification dhdry
alloys, migration of moisture in fibrous insulatjachemical reactors, and drying processes are sxa@ples
where thermosolutal convection is a common occegen

In this paper, the problem of PaliwadaBhen [1] was considered to examine the effectpice
confinement on double diffusive convection withitileed enclosure. The authors had performed erpantal
investigation within a tilted slender slot subjeot cross-gradient of temperature and solute. Resiingle
denoted heating the lower wall, while negative ardgnoted heating the upper wall. The temperatifferehce
across the slot was increased progressively umtivective instability was triggered. Flow patteuisualization
was performed using a shadowgraph technology. Titeat thermal Rayleigh number for the onset of
instability was found to be non-symmetrical wittspect to the vertical position. The heating frora tbwer
wall was less stable. Secondary convective flowssisbing of horizontal convective layers were founde
stable whenf < 0° because of the stabilizing temperature gradient.

In a second part of their study, Paliaad Chen [2] applied a linear stability analysfstlte basic
convective flow when the slot was filled with a diy-stratified fluid subject to a lateral tempenat gradient.
The derived stability equations were solved ushey Galerkin technique. Within the range @fconsidered in
the experimental investigation [1], instability wiasind to be of a stationary type. The predictexlits for the
critical thermal Rayleigh and wave numbers at mdlination angles were found in good agreement with
experimental data. Contrary to the expected ocnaegethe results showed that the system is mobdestehen
the lower wall is heated. That was caused by tbeeased vertical solute gradient in the steady gtdbr to the
onset of instabilities when the heating is fromdel

In the present study, we examine thdicement effect on double diffusive convection writlan inclined
square fluid layer subject cross fluxes of heat swidte. The interest was focused on the effe¢hefthermal
Rayleigh numberRar, and the Lewis numbekg, on the heat and mass transfer rates for thetisituavhere the
thermal and solutal buoyancy forces were equaleue in opposite direction horizontalli}£1). A numerical
procedure based on a second-order finite differemmeroach was considered to solve the full governin



equations.The existence of subcritical and supercritical @mtion was demonstrated and the correspor
thresholds were determined.

2. Mathematical Formulation

The configuration considered in the present stwdgn inclinecsquare cavityfilled with a binary fluid
mixture The origin of the coordinate system is locatethatcenter of the cav, as shown in Fig. 1. Two of it
parallel walls were subject to constant heat flug’, and are impermeable to mass, the other wallg wabjec
to constant mass fluxe§, but keptadiabatic. The fluid wa assumed to be Newtonian and cdng the

Boussinesq approximation.
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Figure 1:Flow configuration geometry and coordinates system.

The governing equations thgovern the double-diffusive convection nweexpressed in terms of t
continuity, momentum, energynd solute concentratiorconservation equations. Thewere given in
dimensionless formsing a stream functi-vorticity (1, w) formulation:
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whereRay, Le and Pr are thethermal Rayleigh, Lew and Prandtl nhumbergespectively, ancN is the
buoyancy ratio. Thegearameters are defined in the nomenclai

The associated dimensionless boundary conditia:
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wherew, ¥, T andS are the dimensidess vorticity, stream function, temperature and solatacentration
respectively.

The average Nusselt andeBvoodnumbers characterizinthe heat and mass tisfer rates are given
respectively by:
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3. Numerical solution

Astandard numerical method based on a se-order finite difference approach was used to stiie
governing equations. An alternating direction iropl{ADI) method was used to solve the discretitransport
equations. However, thstream function equion (2) was solvedising the point succsive over-relaxation
method (SOR). The vorticity a@he walls was discretized using Jensen method Adliniform grid was used



the two directions. The numerical code was validatéh the results of de Val Davis [3] and Mametual [5]
with satisfactory accuracy.

4. Results and discussion

In the present paper, the situation where the &y ratioN=1 and the enclosure tilt angle = 45° was
considered. The effect of the Rayleigh and Lewimibers on the flow behavior and on the heat and mass
transfer rates were investigated, and the thresHoldthe onset of infinitesimal and finite amptiziconvection
were determined.

The situation corresponding td=1 and® = 45° could result in stable motionless state,cividecame
instable above certain critical Rayleigh numbens. the motionless state, there was a vertical densit
stratification within the enclosure, as the horiabitomponents of the thermal and solutal buoydomes were
equal but opposing each other. This situation wadiesd experimentally and theoretically in the gastPaliwal
and Chen [1]-[2] in a tilted slender fluid layervédall, there existed a supercritical Rayleigh namfor the
onset of convection, below which subcritical cortiat existed when the thermal and solutal diffusea were
not equal Le£1). Obviously, the thresholds for the onset of sayptgcal or subcritical convection depended on
the Lewis number. For moderate values@fnatural and anti-natural convective solution®egisted.

Above the onset of supercritical convection, FAgdisplays the streamlines, isotherms and solute is
concentrations, foRa;= 10° andLe=1. For this value of the Lewis number, as showthinfigure, the natural
and anti-natural convective cells are identical Gittulating in opposite direction. As the thernaald solutal
diffusivities were equal, the two solutions had slaene occurrence potential. For the solution whezecell was
counter-clockwise, the convective flow was driven the thermal effect and by solutal effect wherwis
clockwise. Owing to this driving effect, the sotuiiled to different heat and mass transfer ratbe. Aatural
convective solution was defined for the fact ityaiéed when initiating the convective flow from aotionless
state. In this regards, when the Lewis number viggel than unity, the natural solution was drivgntieermal
effects and the convective cell was counter-closkwias the thermal diffusivity effect prevailed. &khthe
Lewis number was smaller than unity, the naturditgmn was driven by solutal effects and the cotiveccell
circulation was clockwise. On the other hand, the-aatural solution was obtained by forcing thevflin the
opposite direction. Usually, at moderate Lewis namithe anti-natural could be sustained for a walege of
the Rayleigh number. However, it became unstablenwi was approaching the threshold for supereatitic
convection and a jump to the natural convectivetsmh may occur prematurely.
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Figure 2: Stream function, temperature and conagatr contours obtained f&ta=10° andLe=1:
a) o= 15.767 Nu,= 4.197,Sh, = 3.574, and b= -15.767 Nu,= 3.574,Sh,= 4.197.

To investigate the convective behavibthe natural and anti-natural solutions, the flmensity,y, ,
and the averaged heat and mass transfer NiigsandSh,, are givens in Fig. 3 as functionsRé: and different
values ofLe. Regardless the value bé, both natural and anti-natural solutions showeéiharease ofy,|, Nu,
and Sh, whenRar was increased. Concerning, the Lewis effect, ifperé shows thaft),| decreased an8h,
increased whehe was increased for both natural and anti-naturaitssls. HoweverNu,, of the anti-natural
solution was decreased witle increase. Far from the onset of convectidn,, of the natural solution seemed



not significantly affected by thé&e variation, but near criticality, the threshold thie onset of convection
increased with decreasihg.
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Figure 3: Natural (left) and anti-natural (rightigtion bifurcation diagrams: flow intensity,, , heat and mass
transfer rated\u,, andShy, as functions of the Rayleigh numbRg;, for various Lewis number valudss.

As explained earlier, both natural amdi-aatural convective solutions bifurcated frone thest state
solution at a given critical Rayleigh number. Theeshold of supercritical convection was obtainecueately
using a linear analysis by marching the solutiontime for extremely weak convective flows, using th
numerical solution of the full governing equatiombe threshold of subcritical convection and theetrof anti-
natural convective were approximately determin@danfthe numerical solution at finite amplitude cocti@n.
First, the determination of the supercritical Rggtenumber is explained.



As known, for infinitesimal amplituderogection, the time evolution of the flow intensityexponential,
according to the linear stability analysis. Thus flow intensity could be expressed #g = geP! , whereq is
the amplitude at=0 (i.e.1,=q att=0). The parametep represents the amplitude growth rate. Typicalg t
value of 1, within the range of107% <, < 10~* was considered and judged small enough to assume
infinitesimal amplitude. When p<0 the flow was dgog and whemp>0 the flow was amplified. After knowing
approximately the location of the threshold numhesing the fully nonlinear solution, the solutiorasv
computed for two values of the Rayleigh number; abeve and one below the threshold. Above the liotds
the numerical solution was marched in time from test state solution. However, below the threshtid,
solution was initiated with a weak convective flos displayed in Fig. 4, the solution was amplifedabve the
threshold and decayed below. The time evolutiothef flow intensity is displayed in Fig. 4. A curfieting
using exponential function was performed and thewtn rate was computed. Fae=1, the two Rayleigh
number values were 1100 and 1250 and the corresgprdbtained growth rate was -0.7798 and 0.5640,
respectively. The threshold for the onset of cotisacwas obtained when p=0, so by interpolatiomyas found
thatRa;, = 1187.04. Redoing the calculations for various Lewis numisee Table 1, it was found tha;.”
obeyed the following relationship with a great aecy:

sup _ 2374.08
Rare =T
The analytical expression &a;,” and the numerical results are depicted in Fig.ith & very good
agreement. The threshold of subcritical convectristed only for the natural convection wheg¢1, and the
values are tabulated in Table 1. The values wetairsal by decreasing progressively the Rayleigh brarm
using a small increment until a jump to conducstate occurred. Both the subcritical and supécativalues
decreased with increasing Lewis number.L&t1, subcritical convection was absent.
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Figure 4: Flow intensity time histories below and Figure 5: Supercritical Rayleigh number as function
above the threshold of supercritical convection for of the Lewis number.

Le=1.

Table 1: Computed subcritical and supercritical IRigyn numbers as function of the Lewis number.

Le 0.1 0.5 1 2 10
RaS“P | 21525 | 15815 1187.04 789.2 | 206.5
Ras¥ | 1830 | 1480 - 740 185

Figure 6 displays the bifurcation diagréor Le=2. BelowRa3%’, the system was unconditionally stable
and the solution was characterized by a pure cdivdustate. Between the critical valu®s§%’and Ra; , the
convective could be triggered only by a finite aityole perturbation. The conductive state remairtells to

infinitesimal perturbation. AboveRa;.” , the conductive state became unconditionally bista Any



perturbation, regardless its amplitude, could ®ig@ convective state. Overstability convection v
observed in the present investigation.
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Figure 6: Bifurcation diagram in terms of the fliwtensity as function of the Rayleigh numberlfer2.
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5. Conclusion

A numerical study was performed on thermosolutalvection in a tilted square fluid enclosure subjec
cross fluxes of heat and solute. The situation w/ilee enclosure was tilted 45° and the buoyandy imequal
to unity (N=1) was considered. The co-existence of natural anti-natural convective solutions was
demonstrated. The thresholds for onset of supm@riand subcritical convection were obtained argethded
on the Lewis number. Overall, the flow intensityahe heat and mass transfer rates increasedhetRayleigh
increase. The effect of the increase of the Lewisilmer was to reduce the flow intensity and increbhsemass
transfer rate.

Nomenclature % dimensionless velocity yrdirection
D mass diffusivity X,y  dimensionless coordinates axis

g gravity

l dimension of the cavity Greek symbols

Le Lewis numberg /D Bs coefficient of volumetric expansion with
Nu, Nusselt number concentration

N buoyancy ratigg;AS* /B AT* Br coefficient of volumetric expansion with
Pr Prandtl number,/a temperature

Ra; Thermal Rayleigh numbeyS,AT*I*?/va AS*  concentration difference

S non-dimensional concentration AT*  temperature difference

Sh,  Sherwood number a thermal diffusivity

T dimensionless temperature v Kinematic viscosity

t dimensionless time Y dimensionless stream function

u dimensionless velocity indirection w dimensionless vorticity
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