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Abstract: The present study dealt with a numerical study of double diffusive natural convection flow in a binary 
fluid contained in a tilted square cavity under cross temperature and concentration gradients. The mass, 
momentum and energy conservation equations were solved numerically using a finite-difference method. The 
study was focused on the cavity tilted at an angle of 45o, and when the thermal and solutal buoyancy forces were 
equal. The Results are presented in terms of the averaged Nusselt and Sherwood numbers, and the flow intensity 
as functions of the thermal Rayleigh and the Lewis numbers. The existence of the onset of convection was 
demonstrated and both natural and anti-natural flows solutions were obtained. Also, when the Lewis number is 
bigger or smaller than unity, subcritical flows are found to exist for natural convective solutions. The critical 
values of the thermal Rayleigh number for the onset of supercritical and subcritical convection were obtained.  

Keywords: Square tilted cavity, Thermosolutal convection, Cross gradients of temperature and concentration, 
Numerical study. 

1.Introduction 
           Double diffusive natural convection phenomenon in a confined fluid enclosure has received considerable 
attention among researchers and scientists owing to its practicality importance in geophysics and many 
engineering processes and applications. The groundwater contamination, melting and solidification of binary 
alloys, migration of moisture in fibrous insulation, chemical reactors, and drying processes are some examples 
where thermosolutal convection is a common occurrence.  
 
           In this paper, the problem of Paliwal and Chen [1] was considered to examine the effect of space 
confinement on double diffusive convection within a tilted enclosure. The authors had performed experimental 
investigation within a tilted slender slot subject to cross-gradient of temperature and solute. Positive angle 
denoted heating the lower wall, while negative angle denoted heating the upper wall. The temperature difference 
across the slot was increased progressively until convective instability was triggered. Flow patterns visualization 
was performed using a shadowgraph technology. The critical thermal Rayleigh number for the onset of 
instability was found to be non-symmetrical with respect to the vertical position. The heating from the lower 
wall was less stable. Secondary convective flows consisting of horizontal convective layers were found to be 
stable when  � < 0° because of the stabilizing temperature gradient.  
 
           In a second part of their study, Paliwal and Chen [2] applied a linear stability analysis of the basic 
convective flow when the slot was filled with a density-stratified fluid subject to a lateral temperature gradient. 
The derived stability equations were solved using the Galerkin technique. Within the range of  � considered in 
the experimental investigation [1], instability was found to be of a stationary type. The predicted results for the 
critical thermal Rayleigh and wave numbers at all inclination angles were found in good agreement with the 
experimental data. Contrary to the expected occurrence, the results showed that the system is more stable when 
the lower wall is heated. That was caused by the increased vertical solute gradient in the steady state prior to the 
onset of instabilities when the heating is from bellow.  
 
           In the present study, we examine the confinement effect on double diffusive convection within an inclined 
square fluid layer subject cross fluxes of heat and solute. The interest was focused on the effect of the thermal 
Rayleigh number, RaT, and the Lewis number, Le, on the heat and mass transfer rates for the situation where the 
thermal and solutal buoyancy forces were equal but were in opposite direction horizontally (N=1). A numerical 
procedure based on a second-order finite difference approach was considered to solve the full governing 



 

 

equations. The existence of subcritical and supercritical convection was demonstrated and the corresponding 
thresholds were determined.  
 
2. Mathematical Formulation     
           The configuration considered in the present study is an inclined 
mixture. The origin of the coordinate system is located at the center of the cavity
parallel walls were subject to constant heat fluxes, 
to constant mass fluxes, j ’, but kept 
Boussinesq approximation.  

Figure 1: Fl

 The governing equations that 
continuity, momentum, energy a
dimensionless form using a stream function
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where ��� , �� and ��  are the thermal Rayleigh, Lewis
buoyancy ratio. These parameters are defined in the nomenclature. 
 

The associated dimensionless boundary conditions are
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3. Numerical solution     
           A standard numerical method based on a second
governing equations. An alternating direction implicit (ADI) method was used to solve the discretized t
equations. However, the stream function equat
method (SOR). The vorticity at the 

The existence of subcritical and supercritical convection was demonstrated and the corresponding 

Mathematical Formulation      
The configuration considered in the present study is an inclined square cavity filled with a binary fluid 
. The origin of the coordinate system is located at the center of the cavity, as shown in Fig. 1. Two of its 

parallel walls were subject to constant heat fluxes, q’, and are impermeable to mass, the other walls were subject 
but kept adiabatic. The fluid was assumed to be Newtonian and obey

 
Flow configuration geometry and coordinates system.       

The governing equations that govern the double-diffusive convection were expressed in terms of the 
continuity, momentum, energy and solute concentration conservation equations. They 

using a stream function-vorticity .�, �) formulation:  
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thermal Rayleigh, Lewis and Prandtl numbers, respectively, and 
parameters are defined in the nomenclature.   

The associated dimensionless boundary conditions are:       
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are the dimensionless vorticity, stream function, temperature and solute concentration, 

herwood numbers characterizing the heat and mass tran
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standard numerical method based on a second-order finite difference approach was used to solve the 
governing equations. An alternating direction implicit (ADI) method was used to solve the discretized t

stream function equation (2) was solved using the point succes
the walls was discretized using Jensen method [4]. A uniform grid was used in

The existence of subcritical and supercritical convection was demonstrated and the corresponding 
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s shown in Fig. 1. Two of its 
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s assumed to be Newtonian and obeying the 

        

re expressed in terms of the 
conservation equations. They were given in 

�.�  % �4�� ? .14 

                         .24 

                        .34 
                        .44 
                        .54 

, respectively, and N is the 

                        .64 

vorticity, stream function, temperature and solute concentration, 

the heat and mass transfer rates are given 
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order finite difference approach was used to solve the 
governing equations. An alternating direction implicit (ADI) method was used to solve the discretized transport 

using the point successive over-relaxation 
. A uniform grid was used in 



 

 

the two directions. The numerical code was validated with the results of de Val Davis [3] and Mamou et al [5] 
with satisfactory accuracy.  
 
 4. Results and discussion     
 In the present paper, the situation where the buoyancy ratio N=1 and the enclosure tilt angle Ф = 45° was 
considered. The effect of the Rayleigh and Lewis numbers on the flow behavior and on the heat and mass 
transfer rates were investigated, and the thresholds for the onset of infinitesimal and finite amplitude convection 
were determined.   
 
 The situation corresponding to N=1 and Ф = 45° could result in stable motionless state, which became 
instable above certain critical Rayleigh numbers. In the motionless state, there was a vertical density 
stratification within the enclosure, as the horizontal components of the thermal and solutal buoyancy forces were 
equal but opposing each other. This situation was studied experimentally and theoretically in the past by Paliwal 
and Chen [1]-[2] in a tilted slender fluid layer. Overall, there existed a supercritical Rayleigh number for the 
onset of convection, below which subcritical convection existed when the thermal and solutal diffusivities were 
not equal (Le≠1). Obviously, the thresholds for the onset of supercritical or subcritical convection depended on 
the Lewis number. For moderate values of Le, natural and anti-natural convective solutions co-existed.  
 
 Above the onset of supercritical convection, Fig. 2 displays the streamlines, isotherms and solute iso-
concentrations, for RaT= 105 and Le=1. For this value of the Lewis number, as shown in the figure, the natural 
and anti-natural convective cells are identical but circulating in opposite direction. As the thermal and solutal 
diffusivities were equal, the two solutions had the same occurrence potential. For the solution where the cell was 
counter-clockwise, the convective flow was driven by the thermal effect and by solutal effect when it was 
clockwise. Owing to this driving effect, the solution led to different heat and mass transfer rates. The natural 
convective solution was defined for the fact it prevailed when initiating the convective flow from a motionless 
state. In this regards, when the Lewis number was bigger than unity, the natural solution was driven by thermal 
effects and the convective cell was counter-clockwise, as the thermal diffusivity effect prevailed. When the 
Lewis number was smaller than unity, the natural solution was driven by solutal effects and the convective cell 
circulation was clockwise. On the other hand, the anti-natural solution was obtained by forcing the flow in the 
opposite direction. Usually, at moderate Lewis number, the anti-natural could be sustained for a wide range of 
the Rayleigh number. However, it became unstable when it was approaching the threshold for supercritical 
convection and a jump to the natural convective solution may occur prematurely.  
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Figure 2: Stream function, temperature and concentration contours obtained for RaT=105 and Le=1:  

a) �E= 15.767, Num= 4.197, Shm = 3.574, and b) �E= -15.767, Num= 3.574, Shm = 4.197. 
 
  
           To investigate the convective behavior of the natural and anti-natural solutions, the flow intensity, �E , 
and the averaged heat and mass transfer rates, Num and Shm, are givens in Fig. 3 as functions of RaT and different 
values of Le. Regardless the value of Le, both natural and anti-natural solutions showed an increase of |�E|, Num 
and Shm when RaT was increased. Concerning, the Lewis effect, the figure shows that |�E| decreased and Shm 
increased when Le was increased for both natural and anti-natural solutions. However, Num of the anti-natural 
solution was decreased with Le increase. Far from the onset of convection, Num of the natural solution seemed 
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not significantly affected by the Le variation, but near criticality, the threshold of the onset of convection 
increased with decreasing Le.    
 

                  
                       

                   
                   

                    
         
Figure 3: Natural (left) and anti-natural (right) solution bifurcation diagrams: flow intensity, �E , heat and mass 

transfer rates, Num and Shm, as functions of the Rayleigh number, RaT, for various Lewis number values, Le. 

 

           As explained earlier, both natural and anti-natural convective solutions bifurcated from the rest state 
solution at a given critical Rayleigh number. The threshold of supercritical convection was obtained accurately 
using a linear analysis by marching the solution in time for extremely weak convective flows, using the 
numerical solution of the full governing equations. The threshold of subcritical convection and the onset of anti-
natural convective were approximately determined from the numerical solution at finite amplitude convection. 
First, the determination of the supercritical Rayleigh number is explained.      



 

 

           As known, for infinitesimal amplitude convection, the time evolution of the flow intensity is exponential, 
according to the linear stability analysis. Thus the flow intensity could be expressed as  �E = G�HI , where q is 
the amplitude at t=0 (J. �. �E=q at t=0). The parameter p represents the amplitude growth rate. Typically, the 
value of  �E  within the range of  10,L < �E <  10,/  was considered and judged small enough to assume 
infinitesimal amplitude. When p<0 the flow was decaying and when p>0 the flow was amplified. After knowing 
approximately the location of the threshold number, using the fully nonlinear solution, the solution was 
computed for two values of the Rayleigh number; one above and one below the threshold. Above the threshold, 
the numerical solution was marched in time from the rest state solution. However, below the threshold, the 
solution was initiated with a weak convective flow. As displayed in Fig. 4, the solution was amplified above the 
threshold and decayed below. The time evolution of the flow intensity is displayed in Fig. 4. A curve fitting 
using exponential function was performed and the growth rate was computed. For Le=1, the two Rayleigh 
number values were 1100 and 1250 and the corresponding obtained growth rate was -0.7798 and 0.5640, 
respectively. The threshold for the onset of convection was obtained when p=0, so by interpolation, it was found 
that ���M

NOH
= 1187.04. Redoing the calculations for various Lewis number, see Table 1, it was found that ���M

NOH 
obeyed the following relationship with a great accuracy:         
 

���M
NOH

=
2374.08

�� + 1
      

           The analytical expression of  ���M
NOH and the numerical results are depicted in Fig. 5 with a very good 

agreement. The threshold of subcritical convection existed only for the natural convection when Le≠1, and the 
values are tabulated in Table 1. The values were obtained by decreasing progressively the Rayleigh number 
using a small increment until a jump to conductive state occurred.  Both the subcritical and supercritical values 
decreased with increasing Lewis number.  At Le=1, subcritical convection was absent.      
 
    

 
   

Figure 4: Flow intensity time histories below and 
above the threshold of supercritical convection for 

Le=1.   

Figure 5: Supercritical Rayleigh number as function 
of the Lewis number.  

  

Table 1: Computed subcritical and supercritical Rayleigh numbers as function of the Lewis number.    

Le 0.1 0.5 1 2 10 

���M
NOH 2152.5 1581.5 1187.04 789.2 206.5 

���M
NOQ 1830 1480 - 740 185 

 
           Figure 6 displays the bifurcation diagram for Le=2. Below ���M

NOQ, the system was unconditionally stable 
and the solution was characterized by a pure conductive state. Between the critical values, ���M

NOQand ���M
NOH, the 

convective could be triggered only by a finite amplitude perturbation. The conductive state remained stable to 
infinitesimal perturbation. Above ���M

NOH , the conductive state became unconditionally instable. Any 



 

 

perturbation, regardless its amplitude, could trigger a convective state. Overstability convection was not 
observed in the present investigation. 
 

 
Figure 6: Bifurcation diagram in terms of the flow intensity as function of the Rayleigh  number for Le=2. 

 
5. Conclusion  
 A numerical study was performed on thermosolutal convection in a tilted square fluid enclosure subject to 
cross fluxes of heat and solute. The situation where the enclosure was tilted 45° and the buoyancy ratio is equal 
to unity (N=1) was considered. The co-existence of natural and anti-natural convective solutions was 
demonstrated. The thresholds for onset of supercritical and subcritical convection were obtained and depended 
on the Lewis number. Overall, the flow intensity and the heat and mass transfer rates increased with the Rayleigh 
increase. The effect of the increase of the Lewis number was to reduce the flow intensity and increase the mass 
transfer rate.  
 

Nomenclature 
R         mass diffusivity 
g          gravity 
S          dimension of the cavity 
Le        Lewis number,  T R⁄  
Num     Nusselt number 
N          buoyancy ratio, VW∆�∗ V�∆�∗⁄  
Pr         Prandtl number, Z T⁄  
RaT      Thermal  Rayleigh number, g V�∆�∗S∗\

ZT⁄  
S           non-dimensional concentration 
Shm       Sherwood number 
T          dimensionless temperature 
t           dimensionless time  
u          dimensionless velocity in x direction 

v           dimensionless velocity in y direction 
x, y       dimensionless coordinates axis 
 
Greek symbols 
VW    coefficient of volumetric expansion with 
concentration  
V�    coefficient of volumetric expansion with 
temperature 
∆�∗     concentration difference   
∆�∗     temperature difference 
T         thermal diffusivity 
Z         Kinematic viscosity 
�         dimensionless stream function 
�         dimensionless vorticity 
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