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Abstract : Periodic coupled natural convection and surface radiation within a square cavity, filled with air and 

submitted to discrete heating and cooling from all its walls, is studied numerically. The thermally active 

elements are centrally located on the walls of the cavity. The parameters governing the problem are the 

amplitude  and the period  of the temporally sinusoidal temperature, the emissivity of the walls, the relative 

lengths of the active elements and the Rayleigh number. The effect of such parameters on flow and thermal 

fields and the resulting heat transfer is examined. It is shown that the flow structure can present complex 

behavior, depending on the emissivity and the amplitude and period of the exciting temperature. The rate of heat 

transfer is generally enhanced in the case of sinusoidal heating. Also, the resonance phenomenon existence, 

characterized by maximum fluctuations in flow intensity and heat transfer, is proved in this study. 
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1. Introduction  
 

Combined natural convection and surface radiation in closed cavities have been extensively studied using 

numerical simulations and experiments owing to the practical importance of such a configuration in many 

engineering applications (convective heat losses from solar collectors, thermal design of buildings, air 

conditioning and recently, the cooling of electronic components). The majority of the existing studies, which are 

of numerical nature, concerned with rectangular cavities where the temperature gradient is either horizontal or 

vertical, including different kinds of boundary conditions. Actually, much more complex boundary conditions may 

be encountered in practical cases where horizontal and vertical temperature gradients are simultaneously imposed 

across the cavity [1-4]. In these studies, the thermal boundary conditions were assumed to be either steady 

isothermal or constant heat flux wall conditions. However, in many engineering applications, the energy provided 

to the system is variable in time and gives rise to unsteady natural-convection flow. The power supply of 

electronic circuits by an alternating current, the collectors of solar energy, rooms housing and building hollow 

blocks, in which recirculation is periodically driven by daily solar heating, are concrete examples. This justifies the 

presence of some works in the literature in which the variable aspect of the thermal boundary conditions was 

considered [5-9]. Results of these studies showed that the buoyancy-induced flow resonates to a certain frequency 

of the periodic heat input and the resonance phenomenon is characterized by maximum fluctuations observed in 

the heat transfer evolution with the period of the time-dependent thermal excitation. In our knowledge, works 

dealing with time periodic combined natural convection-radiation in rectangular cavities subjected to crossed 

thermal gradients are non-existent. This work is, therefore, a contribution to the numerical study of the effect of 

periodic heating on natural convection and surface radiation within a square cavity filled with air and discretely 

heated and cooled from the four walls: two heating modes, called SB and SV, are considered. They correspond to 

bottom and vertical left elements sinusoidally heated in time, respectively. The effect of control parameters on heat 

transfer and fluid flow within the cavity is examined. 
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2. Problem formulation 
 

The configurations under study, together with the system of coordinates, are depicted in Fig. 1. The 2D 

flow is conceived to be laminar and incompressible with negligible viscous dissipation. All the thermophysical 

properties of the fluid are assumed constant except the density in the buoyancy term which is assumed to vary 

linearly with temperature (Boussinesq approximation); such a variation gives rise to the buoyancy forces. Taking 

into account the above-mentioned assumptions, the non-dimensional governing equations, written in vorticity-

stream function and temperature (,, T) formulation, are as follows: 
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Fig. 1: Geometry of the problem with the imposed thermal excitations. 

 

The dimensionless boundary conditions, associated to the problem are such: 

    u = v =  = 0                 on the cavity walls (5a) 

    T = 0                              on the cooled elements (5b) 
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The non-dimensional net radiative heat flux leaving a surface Si is evaluated by: 
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At each time step, the mean Nusselt numbers, characterizing the contributions of natural convection and 

thermal radiation through the heated walls, are evaluated as: 
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- on the vertical heated wall  
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- on the horizontal heated wall 
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The instantaneous convective, radiative and total Nusselt numbers across the whole cavity are defined 

respectively as:  
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The mean Nusselt numbers, averaged in time over periods are calculated as: 
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where cv and rd are respectively the periods of the temporal variations of convective and radiative Nusselt 

numbers (they are identical in general). 

The Heatlines (lines of constant heat function H) are defined through the first derivatives of the function 

H  as follows [10]: 
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The dimensionless heat function equation can be derived easily from Eq. (8) as: 
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The solution of  Eq. (9) yields the values of the heat function in the nodes of the computational domain. 

The contour plots of the heat function values provide heatline patterns.  

 

3. Method of solution 

 
The non linear partial differential governing equations, Eqs. (1)-(3), were discretized using a finite 

difference technique. The first and second derivatives were approached by central differences. The integration of 

equations (1) and (2) was ensured by the Alternating Direction Implicit method (ADI). At each time step, the 

Poisson equation, Eq. (3), was treated by using the Point Successive Over-Relaxation method (PSOR). The set of 

Eqs. (6), representing the radiative heat transfer between the different elementary surfaces of the cavity, was 

solved by using the Gauss-Seidel method. The accuracy of the numerical model was checked by comparing results 

from the present investigation against those previously published by Akiyama and Chong [11] in the case of a 

differentially heated square cavity.  

 

4. Results and discussion 

 
The main parameters governing the problem are the amplitude of the exciting temperature (0 ≤ a ≤ 1), its 

period (0.001 ≤  ≤ 1), the emissivity of the walls (0 ≤  ≤ 1), the Prandtl number, Pr, the Rayleigh number, Ra, 

and the relative length of active elements, B. To highlight the influence of a, and , the values of  B, Pr and Ra 

are fixed to 0.5, 0.72 (air) and 10
6
 respectively.  

 

4.1. Streamlines, isotherms and heatlines in stationary flow (a = 0)  

 

The effect of radiation on dynamical structure, temperature distribution and heat flux transport inside the 

cavity is illustrated in Fig. 2 (case of 0) and Fig. 3 (case of 1) for Ra = 10
6
. In the absence of walls’ 

radiation ( = 0), the streamlines reveal the existence of a main clockwise square peripheral unicellular flow, 

slightly flattened at the corners,  almost in contact with all the cavity’s surfaces and surrounding three small cells 



in the central part of the cavity. The corresponding isotherms are tightened at the vicinity of the active walls 

indicating a good thermal interaction between the fluid and the active elements. The isotherms are however more 

spaced in the vicinity of the heated and cooled vertical walls compared to those near the horizontal active 

elements, indicating an advantage in favor of the latter in contributing to the convective heat exchange. An 

increase of  up to 1 (Fig. 3) leads to more complicated and quite different flow structures. The contribution of 

radiation supports the three inner cells by increasing their size and intensity and favors the formation of two 

other vortices, of less importance, at the remaining corners of the cavity. A similitude in the shapes of heatlines 

and streamlines is observed indicating a predominant contribution of convection to the overall heat transfer.  
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Fig. 2: (a) Streamlines, (b) isotherms et (c) heatlines in the case of constant heating (a = 0) for  = 0. 
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Fig. 3: (a) Streamlines, (b) isotherms et (c) heatlines in the case of constant heating (a = 0) for  = 1. 

 

4.2. Effect of the period  on Nu  

 

In the absence of radiation ( = 0), variations of Nu  are presented in Fig. 4. It can be seen that Nu  

increases with  to a peak, characterizing a resonance phenomenon, for a critical value of , which is of 0.008 for 

the SB mode and 0.00825 for the SV one. By increasing the amplitude a of the variable temperature, the peak 

becomes more important and the resonance phenomenon becomes more pronounced, but without changing the 

critical periods.  
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Fig. 4: Variations of Nu  with the period  for  = 0 and different values of a. 
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Fig. 5: Variations of Nu  with the period  for  = 1 and different values of a. 



Also, it is important to note that beyond the critical value of , Nu  decreases to a minimum value reached 

for 0 which depends on the imposed heating mode. In the case of SB mode, 0 = 0.09, while in the case of the 

SV one, 0 is substantially less and is 0.01, values beyond which Nu  increases until an asymptotic trend, 

depending on a. In the case of highly emissive walls ( = 1), Fig. 5 shows that the total heat transfer are more 

enhanced in comparison with the case of  = 0. When  passes from 0 to 1, the enhancement of the time averaged 

heat transfer, Nu , is of about 142 % at the resonance. The resonance phenomenon is obtained for the same 

critical periods for both considered heating modes. 

 

Conclusion 
 

The problem of periodic natural convection coupled with thermal radiation inside a square cavity, 

submitted to cross gradients of temperature, has been studied numerically. A resonance phenomenon, 

characterized by maximum fluctuations in flow intensity and heat transfer, is observed. The resonance period has 

the particularity of  being independent vis-à-vis the excitation amplitude and the emissivity of the walls. With the 

exception of low values of the period of the exciting temperature, time variable heating, generally improves heat 

transfer compared with the case of a constant heating. 

 

Nomenclature 
 

Fij       view factor from Si surface to Sj one 

g        acceleration due to gravity, m/s
2
 

Ji         dimensionless radiosity, 
4

Ci T /J   

Nu      average Nusselt number 

Pr       Prandtl number,  / Pr  

Ra     Rayleigh number,  /H)TT(  g Ra 3
CH  

T         dimensionless fluid temperature 

Tr        dimensionless reference temperature,   

           )TT/(TT CHCr   

t         dimensionless time, 
2H/ tt   

(u,v)  dimensionless horizontal and vertical  velocities 

(x,y)  dimensionless coordinates, H/)y ,x(  )y ,x(   

 

Greek symbols 

     thermal diffusivity of fluid, m
2
/s 


     

thermal expansion coefficient of fluid, 1/K 

      thermal conductivity of fluid, W /(K  m) 

       kinematic viscosity of fluid, m
2
/s 

       
dimensionless vorticity,  /H 2

 

     dimensionless stream function,  /  

     Stéfan-Boltzman constant 

 

Subscripts, Superscripts 

C      cooled surface 

H      heated surface 

        dimensional variable 
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