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Abstract: In this work, we consider a two-dimensional numerical study of double diffusion natural convection 

in a square enclosure subjected to horizontal temperature and concentration gradients. The flow is driven by 

opposite thermal and solutal buoyancies. Finite volume method is used to solve the dimensionless governing 

equations. The active location tikes three positions in the left wall: top (T), middle (M) and bottom (B). The 

obtained results show that the increase of Rat leads to enhance heat and mass transfer rates. The flow is steady at: 

Rat<7 10
4
 for (T) and Rat<6 10

5
 for (M). The unsteady flow appears by the formation of regular (periodic) 

oscillations of particles in the flow when Rat=7 10
4
 for top and Rat=6 10

5
 for middle. While for case bottom, the 

flow is steady for high Rayleigh number (Rat=10
8
).

 
The fast Fourier transform has been used to determine the 

dominant period of oscillations. Which is (1/20) for (T) and (1/34.7) for (M). 
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1. Introduction 
Natural convection in which the buoyant forces are due both to temperature and concentration gradients is 

generally referred to as thermosolutal convection or double-diffusive convection. Various modes of convection 

are possible depending on how temperature and concentration gradients are oriented relative to each other as 

well as to gravity: the stratified fluid can be subjected to horizontal or vertical temperature and concentrations 

gradients [1]. Natural convection in enclosures is investigated by many researches due to its wide application 

areas: thermal design of buildings, thermal energy storage systems, melting and solidification process, pollution 

dispersion in lakes and etc. Thermosolutal convection is also important in crystal growth processes. Heat and 

mass transfer through an enclosure is influenced by parameters such as wall boundary conditions, inclination, 

aspect ratio and cavity geometry. Double diffusive convection has been studied in many references [1-7]. 

In this work, we present a numerical study of thermosolutal natural convection in a square enclosure filled 

with a binary fluid (CuSO4+H2SO4+H2O with Pr=7 and Sc=240) and submitted to horizontal temperature and 

concentration gradients. The main focus is on examining the effect of thermal Rayleigh number (10
3 

≤Rat≤ 10
8
)
 

on fluid flow. The unsteady oscillatory flow is also studied. The dominate frequency is determined by fast 

Fourier transform method. The rate of heat and mass transfer in the enclosure is measured in terms of the 

average Nusselt and Sherwood numbers. 

 

2. Problem geometry 
The geometry of the problem is shown in Fig. 1. The horizontal boundaries of the enclosure are 

impermeable and thermally insulated. The boundary conditions are selected in which to obtain opposing thermal 

and solutal buoyancy forces.  

3. Governing equations 

The flow in the enclosure is assumed to be two-dimensional. All fluid properties are constant. The fluid is 

considered to be incompressible and newtonian. The Boussinesq approximation is applied. Viscous dissipation, 

heat generation, radiation and Soret effects are neglected.  
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 at   t = 0 : U = V = 0; 0 ; C = 0; 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1 

 for  t > 0 : 
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The boundary conditions in the dimensionless form are: 

                                                         U=V=0, for all boundaries                                               (6a) 

                                       θ=C=1 for X=0, Y ≥ 1/2 or 3/4 ≥Y ≥1/4 or Y≤1/2                              (6b) 

                                                         θ=C=0 for X=1, 0 ≤ Y ≤ 1                                                (6c) 

                                                  X


= 0




X

C
 for Y=0 and Y=1, 0 ≤ X ≤ 1                             (6d) 

The local Nusselt and Sherwood numbers are defined by: 
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4. Numerical method 

 Finite volume method is used [8]. A uniform mesh is used in X and Y directions. A Hybrid scheme and 

first order implicit temporally discretization are used. A (60x60) grid was selected and used in all the 

computations. A comparison was made with the numerical results obtained by Nithyadevi [7]. A good agreement 

is obtained. 

5. Results and discussions 

The effect of thermal Rayleigh number on fluid flow, thermal and solutal fields is illustrated in Fig. 2. The 

hot active region is along the half portion of the left vertical wall. A single cell rotating in clockwise direction 

appears inside the enclosure. In consequence natural convection is dominated by thermal buoyancy (N=1 and 

Le=α/D=34.28). By moving of the active location from the top to the bottom, we observe that the maximum 

absolute values of streamline function ψ and velocity flow V are more important. While the average Nusselt and 

Sherwood numbers are more important in the case (M). It is clear that the average Nusselt and Sherwood 

numbers are increasing with Rayleigh number as shown in Fig. 2. Heat and mass transfers are more important in 

the case (M). The fluid contained in the enclosure rises along the hot location and falls along the right cold wall, 

so thermal and concentration gradients are very important in these regions. For the three cases, concentration in 

the middle of the enclosure is almost constant. In consequence, we can notes that the position of the active 

location has a noticeable effect on the rate of heat and mass transfer and fluid velocity.  

To know that the flow is steady or unsteady for each value of Rat, we fellow the temporary evolution of 

horizontal velocity U, at six locations, arbitrary selected in the fluid Pi (i=1:6) corresponding respectively to the 

points: (0.06, 0.49), (0.23, 0.83), (0.31, 0.14), (0.49, 0.49), (0.66, 0.83) and (0.83, 0.66). Figure 3 shows that the 
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Figure. 1. Physical 

configuration. 

 



                                                              

                                                            
max 3.62, V=14.61               Nu 1.44            Sh 4.69 

                                                               

                                                             
max 4.71, V=18.15              Nu 1.87                          Sh 6.26 

                                                               

                                                            
max 5.05, V=19.59              Nu 1.75                    Sh 5.97 

 

flow is steady in all points for the three cases: T (Rat=6.10
4
), M (Rat=5.10

5
) and B (Rat =10

7
). The same remark 

can be observed in fig. 4, which represents temporal evolution of the average Nusselt number along the active 

walls. Thermal balance is reached respectively at (t > 4) for T, (t > 1.5) for M and (t > 1.2) for B.  
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Figure. 3. Evolution of horizontal velocity for six points Pi (i=1:6). Rat=6.10

4
. 
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Figure. 4. Evolution of the average Nusselt number: top (T), middle (M) and bottom (B). 

 

The unsteady solution can be known by determination of the critic thermal Rayleigh number Ratcr. In this 

case, we observe the formation of regular periodic oscillations of particles in the flow. In our problem, the steady 

solution is maintained until: Rat=6.10
4 

for T and Rat=5.10
5
 for M. The oscillatory unsteady one appears at 

Ratcr=7.10
4
 and Ratcr=6.10

5
 respectively for (T) and (M) as shown in Fig. 5. 

In order to avoid the numerical perturbations, we reduce time step from 10
-4

 to 2.5 10
-5

. The amplitude 

oscillations keep the same value. In consequence the obtained instability is a physical one. We note that the 
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Figure. 2. Steady state of 

streamlines (left), isotherms 

(middle) and iso-concentrations 

(right) for Rat=10
4
. 
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amplitude of the oscillations of each point Pi depends on its position with the walls enclosure. 

The rate of heat transfer in the enclosure for the two cases (T and M) are illustrated in Fig. 6. The 

temporary evolutions of the average Nusselt number along the active walls are also periodic around their average 

values respectively (2.51) for (T) and (6.2) for (M). 
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To obtain the energy spectrum of the oscillations, we use the fast Fourier transform (FFT) of certain 

number of values (N=2
11

) corresponding to horizontal velocity. Fcr denotes the energy pic which is the dominant 

frequency. Fig. 7 shows the variation of energy perturbations with their frequency in P3. We note that Fcr=20 for 

(T) and Fcr =7.43 for (M). Fcr is the same in the other points for the two cases (T and M). In consequence the 

dominant period are respectively 1/20 and 1/7.43. 
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Conclusion 
A numerical study was employed to analyze the flow, heat and mass transfer of a binary fluid (chemical 

solution) filled in a square enclosure with top, middle and bottom active location of the left vertical wall. The 

flow is driven by opposite thermal and solutal buoyancies. The following conclusions are summarized. It is 

found that the rate of heat and mass transfer is more important in the case (M). The flow is steady until 

Rat<7.10
4
 for (T) and Rat<6.10

5
 for (M). The unsteady flow appears by the formation of regular (periodic) 

oscillations of particles in the flow when Rat=7.10
4
 for (T) and Rat=6.10

5
 for (M). The dominant periods of 

oscillations calculated with fast Fourier transformation are 1/20 for (T) and 1/7.43 for (M). For the case (B), the 

fluid flow continue to be more steady and stable without showing a particular oscillations, for high Rayleigh 

number (Rat=10
8
).    

 

Nomenclature 
A aspect ratio, H/L  

C dimensionless concentration (C
*
-

Cmin)/∆C
*
 

D solutal diffusivity, m
2
.s

-1
 

E spectral energy 

F frequency of oscillations 

Figure. 5. Evolution of horizontal 

velocity U, for top and middle 

location in point P3.   

 

Figure. 6 Evolution of 

the average Nusselt 

number. 

 

Figure. 7. Energy 

spectrum corresponding 

at P3. 

 



g gravitational acceleration, m.s
-2 

 

Le Lewis number, Le= α/D 

Nu  local Nusselt number, Eq. (7) 

Nu  average Nusselt number, Eq. (8) 

N buoyancy ratio number,  (βs ∆C
*

 )/(βt ∆T) 

P dimensionless pressure, p/(α/H)
2
 

Pr Prandtl number of the fluid, υ/α 

Rat  thermal Rayleigh number, gβt H
3
∆T/υα 

Sc Schmidt number, υ/D 

Sh  local Sherwood number, Eq. (7) 

Sh  average Sherwood number,  Eq. (8) 

t  dimensionless time, t
*
/(H

2
/ α) 

U, V  dimensionless velocity components, 

u/(α/H), v/ (α/H)  

V   dimensionless velocity of the flow  

X, Y non-dimensional cartesian coordinates, 

x/H, y/H 

Greek symbols 

α thermal diffusivity, m
2
.s

-1
  

βt thermal expansion coefficient, K
-1

 

βs solutal expansion coefficient,   m
3
.Kg

-1 

θ non-dimensional temperature, (T-

Tmin)/∆T 

υ kinematics viscosity, m
2
.s

-1
 

ρ density, Kg.m
-3 

ψ non-dimensional stream function, 

U= ψ/ Y 

∆T temperature difference, (Tmax - Tmin)  

∆C
* 

concentration difference, (Cmax - Cmin) 

Subscripts 

0 reference state 

max maximum 

min minimum 

* dimensional parameter  
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