
 

16èmes Journées Internationales de Thermique (JITH 2013) 
Marrakech (Maroc), du 13 au 15 Novembre, 2013 

 

Heat and mass transfer induced by natural convection combined with 

 thermo-diffusion within a horizontal porous enclosure 

heated and salted from its shorts sides 

 
Mohammed ER-RAKI 

(1)
, Mohammed HASNAOUI 

(2)*
, Abdelkhalk AMAHMID 

(2)
,  

Mohamed BOURICH 
(3) 

(1) 
Ecole Supérieure de Technologie de Guelmim, Université Ibn Zohr, Agadir, Maroc 

(2) 
UCA, FSSM, LMFE, Unit affiliated to CNRST (URA 27), Marrakech, Morocco 

 (3) 
Ecole Nationale des Sciences Appliquées, Université Cadi Ayyad, Marrakech, Maroc 

m.erraki@ucam.ac.ma, hasnaoui@uca.ma, amahmid@uca.ma, Bourich@uca.ma 

 

 
Abstract : Fluid flow and Heat and mass transfers induced by natural convection combined with thermo-

diffusion phenomenon "Soret effect" within a shallow porous enclosure submitted to lateral uniform heat and 

mass fluxes is studied in this work. The interest is mainly centered on a specific situation where the buoyancy 

forces ratio 𝑁 and the Soret parameter 𝑆𝑃  are such that 𝑁 = −1/(1 − 𝑆𝑃). In the absence of the Soret effect, this 

case corresponds to 𝑁 = −1 for which the buoyancy forces induced by thermal and solutal effects are opposing 

and of equal intensity. An analytical solution is derived on the basis of the parallel flow approximation, and is 

subsequently validated numerically by solving the complete governing equations using a finite difference 

method. The effect of the parameters governing the problem on fluid flow properties and heat and mass transfer 

characteristics is analyzed. The existence of multiplicity of solutions is also discussed. 

 

Key words : Heat and mass transfers, Soret effect, porous medium, parallel flow assumption, subcritical 

convection. 

 

1. Introduction 

 

The Soret effect on double diffusive natural convection developed in a fluid-saturated porous media has 

received a growing attention as it is encountered in many natural, environmental and engineering processes. The 

water movements in geothermal reservoirs, the diffusion of the radioactive substances in the underground 

deposits and the diffusion of the chemical elements in the porous reactive beds are some applications among 

others where this type of problems can be observed. From a theoretical point of view, this interest is justified by 

the existence of specific behaviours (multiplicity of solutions, hysteresis phenomenon, Hopf’s bifurcations, etc.) 

attributed to the thermo-diffusion phenomenon. Most of the experimental studies on the thermo-diffusion were 

dedicated to the measurement of Soret coefficient for various mixtures using different techniques [1-3]. For 

binary mixtures, the Soret coefficient is measured as the ratio of the thermo-diffusion coefficient to the 

molecular diffusion and the accuracy of the measurements is inevitably influenced by convection. In the review 

by Platten [4], relating the different techniques used to measure the Soret coefficient, the reader learns that each 

technique has its own limitation, which means that the experimental approach of the phenomenon remains still a 

real challenge for the experimenters. The literature review shows also that some experiments were dedicated to 

measure bifurcations phenomena in a porous layer [5] or to measure the separation of species [6-7]. The 

theoretical efforts on the subject were dedicated to the bifurcation phenomena [8-9], multiplicity of solutions 

[10-11], separation optimization [12], etc. 

The main objective of the present investigation consists to study analytically and numerically the Soret 

effect on thermosolutal natural convection induced in a horizontal Darcy porous layer subject to lateral heat and 

mass fluxes. This problem is classified in the category of problems where heat and mass gradients are imposed 

horizontally. In the absence of Soret effect, an equilibrium solution is possible when thermal and solutal 

buoyancy forces are opposing each other. In this investigation, the attention is mainly focused on the particular 

situation where 𝑁 = −1/(1 − 𝑆𝑃). An appropriate analytical solution is derived using the parallel flow 

approximation. The features predicted by the analytical analysis are confirmed numerically for a wide range of 

the governing parameters and interesting flow bifurcations phenomena are discussed. 
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2. Problem formulation 

 

The studied configuration is sketched in Fig. 1. It consists of an isotropic, homogeneous and saturated 

horizontal Darcy porous layer of height 𝐻′ and width 𝐿′ such that 𝐴𝑟 = 𝐿′/𝐻′ ≫ 1. The lateral walls of the 

enclosure are subjected to uniform fluxes of heat 𝑞′ and mass 𝑗′ while its long horizontal walls are considered 

adiabatic and impermeable to mass transfer. The diluted binary solution that saturates the porous medium is 

modeled as a Boussinesq incompressible fluid for which the fluid density varies according to the relationship 

given by: 

𝜌 = 𝜌0 1 − 𝛽𝑇(𝑇′ − 𝑇′0) − 𝛽𝑆(𝑆′ − 𝑆′0                                       (1) 

The subscript “0” refers to conditions at the origin of the coordinates system taken in the geometric centre of the 

cavity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Assuming constant physical properties and using the Boussinesq approximation, the dimensionless governing 

equations obeying the Darcy model are as follows: 

𝜂
𝜕𝜉

𝜕𝑡
+ 𝜉 = 𝑅𝑇  

𝜕𝑇

𝜕𝑥
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𝜕𝑥
                                                                         (2) 
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∇2𝜓 = −𝜉                                                                                                         (5) 

𝑢 =
𝜕𝜓

𝜕𝑦
    ;     𝑣 = −

𝜕𝜓

𝜕𝑥
                                                                                (6) 

The boundary conditions associated to this problem are such that: 

 
 

  𝑥 = ±𝐴𝑟/2   ∶    𝜓 = 0     ,     
𝜕𝑇

𝜕𝑥
= 1     ,     

𝜕𝑆

𝜕𝑥
= 1 − 𝑆𝑃

 𝑦 = ±1/2   ∶    𝜓 = 0     ,     
𝜕𝑇

𝜕𝑦
= 0     ,     

𝜕𝑆

𝜕𝑦
= 0            

                 (7)  

where 𝜉, 𝜓, 𝑇, 𝑆, 𝑢 and 𝑣 are the dimensionless vorticity, stream function, temperature, concentration, horizontal 

and vertical components of the velocity, respectively. 

In the governing equations, dimensionless parameters appear explicitly which are the thermal Rayleigh number, 

RT; the Lewis number, Le; the Soret parameter, SP; and the solutal to thermal buoyancy ratio, N. They describe 

respectively the thermal driving force, the relative importance of the thermal diffusivity with respect to the solute 

one, the thermo-diffusion phenomenon (Soret effect) and the importance of solutal buoyancy forces due to the 

applied mass flux, 𝑗′. 

Figure 1: Shematic of the physical problem 
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The Nusselt and Sherwood numbers, which characterize the heat and mass transfer rates, are respectively given 

by: 

𝑁𝑢 =  𝑁𝑢(𝑦)𝑑𝑦
1/2

−1/2

       and         𝑆ℎ =  𝑆ℎ(𝑦)𝑑𝑦                         (8)
1/2

−1/2

 

where: 

 
𝑁𝑢(𝑦) = lim

𝛿𝑥→0
𝛿𝑥/𝛿𝑇(𝑦)  = lim

𝛿𝑥→0
1/ 𝛿𝑇(𝑦)/𝛿𝑥 = 1/ 𝜕𝑇/𝜕𝑥 𝑥=0

𝑆ℎ(𝑦) = lim
𝛿𝑥→0

𝛿𝑥/𝛿𝑆(𝑦)  = lim
𝛿𝑥→0

1/ 𝛿𝑆(𝑦)/𝛿𝑥 = 1/ 𝜕𝑆/𝜕𝑥 𝑥=0  
  

 

3. Results and discussion 

 

In general, it is not possible to perform an exact analytical solution for the governing equations. However, 

in the case of shallow enclosures (𝐴𝑟 ≫ 1), an approximate analytical solution can be developed in the central 

part of the cavity. This solution is based on the parallel flow approximation which allows the following 

simplifications: 

𝜓(𝑥, 𝑦) ≅ 𝜓(𝑦)  ,  𝑇(𝑥, 𝑦) ≅ 𝐶𝑇𝑥 + 𝜃𝑇(𝑦)  and  𝑆(𝑥, 𝑦) ≅ 𝐶𝑆𝑥 + 𝜃𝑆(𝑦) 

where 𝐶𝑇  and 𝐶𝑠 are respectively unknown constant temperature and concentration gradients in the horizontal 

direction. 

Taking these approximations into account, a set of ordinary differential equations is obtained. The 

analytical resolution of these equations leads to analytical expressions of 𝜓,  𝑇 and 𝑆: 

𝜓(𝑦) = 𝜓0(−4𝑦2 + 1)                                                                                  (9) 

𝑇(𝑥, 𝑦) = 𝐶𝑇𝑥 + 𝜓0𝐶𝑇  
−4

3
𝑦3 + 𝑦                                                          (10) 

𝑆(𝑥, 𝑦) = 𝐶𝑆𝑥 + 𝜓0(𝐶𝑆𝐿𝑒 − 𝐶𝑇𝑆𝑃)  
−4

3
𝑦3 + 𝑦                                    (11) 

Where 𝜓0 is the stream function at the centre of the enclosure; it is defined by the following expression: 

𝜓0 =
𝑅𝑇

8
 𝐶𝑇 + 𝑁𝐶𝑆                                                                                       (12) 

By performing global balances of energy and solute transfers across any transversal section of the enclosure, we 

obtain the constant temperature and concentration horizontal gradients 𝐶𝑇  and 𝐶𝑆: 

𝐶𝑇 =
1

1 + 8𝜓0
2/15

                                                                                        (13) 

𝐶𝑆 =
1

1 + 8𝐿𝑒2𝜓0
2

/15
− 𝑆𝑃

(1 − 8𝐿𝑒𝜓0
2/15)

(1 + 8𝐿𝑒2𝜓0
2

/15)(1 + 8𝜓0
2/15)

       (14) 

The local Nusselt and Sherwood numbers are found to be constant, they are given by: 

𝑁𝑢 = 𝑁𝑢    =
1

𝐶𝑇

= 1 + 8𝜓0
2/15                                                                 (15) 

𝑆ℎ = 𝑆ℎ   =
1

𝐶𝑆

=
(1 + 8𝐿𝑒2𝜓0

2
/15)(1 + 8𝜓0

2/15)

(1 + 8𝜓0
2/15) − 𝑆𝑃(1 − 8𝐿𝑒𝜓0

2/15)
                    (16) 

By combining the equations (12), (13) and (14), an equation for 𝜓0 is established: 

𝐴𝜓0
5 + 𝐵𝜓0

3 − 𝐶𝜓0
2+𝐷𝜓0 − 𝐸 = 0                                                 (17) 

where 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 are expressed in terms of the governing parameters of the problem as follows: 

 
 
 

 
 
𝐴 =  512𝐿𝑒2                                    
𝐵 = 960(𝐿𝑒2 + 1)                        

𝐶 = 120𝑅𝑇(𝐿𝑒2 + 𝑁𝑆𝑃𝐿𝑒 + 𝑁)
𝐷 = 1800                                       
𝐸 = 225𝑅𝑇(1 − 𝑁𝑆𝑃 + 𝑁)       

  



Mathematical analysis of the equation (17), with 𝑁 = −1/(1 − 𝑆𝑃) corresponding to 𝐸 = 0, shows that 

this equation has only two solutions (when they exist). At sufficiently large value of 𝑅𝑇 , these solutions are 

defined by 𝜓0 ∝ 𝑅𝑇
1/3 and 𝜓0 ∝ 𝑅𝑇

−1 and the corresponding flows rotate in the same direction.  

Also, it can be easily demonstrated that the 𝑆𝑃 − 𝐿𝑒 plane can be divided into two regions I and II 

delineated in Fig. 2 and characterized by counter-clockwise and clockwise flows, respectively. The 

thermodiffusion effect on the flow rotation is clearly shown in this figure. 

In other hand, it appears from the equation (17) that no super-critical bifurcation is possible for the parallel flow 

solution; only a sub-critical one exists and the latter occurs at 𝑅𝑇 = 𝑅𝑇
𝑠𝑢𝑏  given by: 

𝑅𝑇
𝑠𝑢𝑏 =

𝜓 0(4𝐴𝜓 0
2

+ 2𝐵)

120 𝐿𝑒2 + (𝑆𝑃𝐿𝑒 + 1)/(𝑆𝑃 − 1) 
                                               (18) 

where    𝜓 0 =  (−𝐵 +  Δ)/6𝐴      with     𝛥 = 𝐵2 + 12𝐴𝐷 

The Soret effect on the critical Rayleigh number, characterizing the onset of the sub-critical natural convection, 

is shown in Fig. 3. The variations of 𝑅𝑇
𝑠𝑢𝑏  with 𝑆𝑃  are illustrated for different values of 𝐿𝑒 (𝐿𝑒 = 3 and 𝐿𝑒 =

10). It can be seen from this figure that the Soret effect can play a stabilizing (𝑆𝑃 < 1 − 1/𝐿𝑒 and 𝑆𝑃 > 1) or a 

destabilizing (1 − 1/𝐿𝑒 < 𝑆𝑃 <1) role whatever the considered binary mixture (value of 𝐿𝑒) is. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The effect of the thermal Rayleigh number, 𝑅𝑇 , on the fluid flow and heat transfer characteristics is 

illustrated in Fig. 4 in terms of 𝜓0 (4-a) and Nu (4-b) variations with 𝑅𝑇  for different combinations (𝐿𝑒, 𝑆𝑃). The 

combinations of 𝐿𝑒 and 𝑆𝑃  are chosen so that both clockwise and counter clockwise flows can be observed.  
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Fig. 3: Variations of 𝑅𝑇
𝑠𝑢𝑏  with 𝑆𝑃  for 

different values of Le 
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Fig. 2: Delimitation of regions in the (𝑆𝑃 − 𝐿𝑒) 

plane according to the flow direction 
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As shown in Fig. 4, the onset of the subcritical convection occurs at the critical Rayleigh number 𝑅𝑇
𝑠𝑢𝑏 =

1.915 and 8.045 respectively for (𝐿𝑒, 𝑆𝑃) = (10,3) and (10, 0.92). Therefore, 𝑅𝑇
𝑠𝑢𝑏 (𝑆𝑃 =  0.92) > 𝑅𝑇

𝑠𝑢𝑏 (𝑆𝑃 =
3), which is in accordance with the results of Fig. 3 illustrating the variations of 𝑅𝑇

𝑠𝑢𝑏  with 𝑆𝑃 . It can be seen 

from Fig. 4 that only one of the two analytical solutions is validated numerically; it is termed as a “stable” 

solution. The other solution could not be validated numerically and it is termed as “unstable”. Figs. 4(a) and 4(b) 

show that  𝜓0  and 𝑁𝑢 corresponding to the stable branches increase with 𝑅𝑇 . Analytically, 𝑁𝑢 varies as 𝑅𝑇
2/3 

at large 𝑅𝑇 . For the unstable branches, these quantities are nearly constant and close to 0 and 1 respectively (i.e. 

values of the purely diffusive regime). 

 

4. Conclusion 

 
Fluid flows and heat and mass transfers induced by natural convection combined with Soret effect within a 

horizontal porous layer submitted to lateral uniform heat and mass fluxes is studied. The attention was focused 

on the particular situation for which the rest state is a solution of the problem. An excellent agreement between 

the stable analytical results, based on the parallel flow approximation, and those numerical is observed. Only the 

sub-critical bifurcation was found possible for the parallel flows for this case and its threshold was determined 

analytically versus the governing parameters. 
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