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ABSTRACT. Steady, laminar, conjugate natural convection flow in a square porous 

enclosure is considered. The enclosure is filled with air and subjected to horizontal 

temperature gradient. Darcy-Brinkman-Forchheimer model is considered. Finite 

volume method is used to solve the dimensionless governing equations. The main focus 

of the study is on examining the effect of Darcy number on fluid flow and heat transfer. 

The effect of Rayleigh number and conduction in the left wall is also considered. The 

obtained results show that natural convection can be strength by the increase of both 

Rayleigh number and conductivity ratio, because of the increase of the effective 

temperature difference driving the flow. It is also intensified as the Darcy number 

increases. Heat transfer is less important for low permeability of porous medium. 

Furthermore for poor conducting wall, where the solid part is an insulated material and 

the thermal resistance is more important the average Nusselt number is approximately 

constant and having low values comparing with equal  and high conducting wall, 

indicating that most of heat transfer is by heat conduction.  

Keywords: Conjugate natural convection, porous medium, finite volume method, 

Darcy-Brinkman- Forchheimer model. 

 

1. INTRODUCTION   

 

Natural convection heat transfer in a cavity filled with fluid saturated porous media can 

be seen in many applications of engineering. Some of these are solar power collectors, 

geothermal applications, nuclear reactors cryogenic storage, furnace design and others 

[5]. The problem of natural convection flow in a square and rectangular enclosure with 

uniform temperature at vertical walls and insulated top and bottom walls has been the 

subject of many studies. The walls of the enclosure are assumed to be of zero thickness 

and conduction is not accounted for. However, in many practical situations, especially 

those concerned with the design of thermal insulation, conduction in the walls can have 

an important effect on the natural convection flow in the enclosure [2-4]. Natural 

convection in porous medium is studied in many articles [5-7]. Yasin and al.[5] 

analyzed numerically using finite difference scheme and Darcy model the flow and heat 



transfer in a diagonally divided square cavity by an inclined plate and filled with a 

porous medium. Vertical walls are kept at isothermal conditions, while horizontal walls 

are insulated.  

Sathiyamoorthy and al [6] studied numerically natural convection flows in a square 

cavity filled with a porous matrix. Darcy–Forchheimer model without the inertia term is 

used to simulate the momentum transfer in the porous medium. 

Tanmay and al.[7] studied numerically natural convection flows in a square cavity filled 

with a porous matrix using penalty finite element method for uniformly and non-

uniformly heated bottom wall, and adiabatic top wall maintaining constant temperature 

of cold vertical walls. Darcy–Forchheimer model is used to simulate the momentum 

transfer in the porous medium. 

The above results concern either pure convection in porous medium without using 

Darcy Brinkman forchheimer model. It is essential to study conjugate natural 

convection using the general model. We study the effect of the permeability of porous 

medium and wall conductivity on steady laminar conjugate natural convection in a 

square enclosure filled with air (Pr=0.71) and submitted to horizontal temperature 

gradient. The main focus is on examining the effect of conduction in the wall, 

Rayleigh number and Darcy number on fluid flow and heat transfer.  

 

2. PROBLEM GEOMETRY AND GOVERNING EQUATIONS 

 

The geometry of the problem is shown in Fig.1. The flow is two-dimensional, laminar 

and incompressible.  All fluid properties are constant. The fluid is considered to be 

Newtonian. Viscous dissipation, heat generation and radiation effects are neglected. The 

Boussinesq approximation is applied : ρ(T)=ρ0[1-β(T-T0)]. 

 

 
 

Figure 1. Physical configuration. 

 

The dimensionless form of the governing equations can be written as:  

- at 0t ; 0 fwVU   

- For t  > 0 
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● solid part  
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The effect of porous medium appears in the governing equations (2-3) through Darcy 

and porosity numbers.  

The boundary conditions are: 
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The local and average Nusselt numbers are defined by:  
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A hybrid scheme and first order implicit temporally discretisation are used [1]. The 

iteration process is terminated under the following conditions: 
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where   representes U, V and θ. 

 For wall side    DXX NuNu  0  (9) 

 For fluid side    HLXDX NuNu /   (10) 

Where D is the dimensionless wall thickness  (D=d/H). 

 

 



3. GRID INDEPENDENCY  

Figure 2 shows, for D=0.2, Ra=106, Kr=1and Da=10-3 the effect of grid points on the 

average Nusselt number at solid-porous interface. In order to obtain a precise results a 

(90x90) grid points was selected and used in all the computations. 

4. NUMERICAL VALIDATION  

In order to validate our results, a comparison with the results obtained by Kaminski and 

Prakash (1986) for conjugate natural convection in fluid medium was made (table 1). A 

good agreement between the obtained and reported results can be observed. 

 

 
Figure 2. Average Nusselt Number for different grid size. 

 

Table 1 Comparison with Kaminski solution, (D=0.2). 
 

Ra  Kr  Kaminski Present Study 

 

7 x 102 

1 0.87 0.88 

5 1.02 1.02 

10 1.04 1.04 

∞ 1.06 1.06 

 

7 x 104 

1 2.08 2.16 

5 3.42 3.45 

10 3.72 3.74 

∞ 4.08 4.06 

 

5. RESULTS AND DISCUSSION  

The results are presented for different values of governing parameters:103 ≤ 𝑅𝑎 ≤ 106,  

10−4 ≤ 𝐷𝑎 ≤ 10−1,   0.1 ≤ 𝐾𝑟 ≤ 10    and  D=0.2. 

5.1 Fluid Motion and Thermal field 

 

Table 2 and figure3 (a-c) show the effect of both Darcy number and thermal 

conductivity ratio on fluid motion in the enclosure for poorly conducting wall (Kr=0.1), 

equal wall/porous conductivity (Kr=1) and high conducting wall (Kr=10). We observe 
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in table 1 that the maximum values of dimensionless stream function /ψmax/ and fluid 

velocity Vmax in porous part are decreasing with the decrease of Darcy number and 

increasing with the increase of conductivity ratio. As a result natural convection is 

weaken because of the decrease of porous permeability and strength because of the 

increase of the effective temperature difference driving the flow. 

 

(a) Kr=0.1 

                                 Da=10-1                    Da=10-3                    Da=10-4 

 

   
(b) Kr=1 

 

   
(c) Kr=10 

 

   
 

Figure 3. Steady state of stream lines for different values of Da and Kr. 

 

Table 2. /ψmax/ and Vmax for differante Da and Kr. D=0.2 

 

 Da=10-1 Da=10-3 Da=10-4 

/ψmax/ Vmax /ψmax/ Vmax /ψmax/ Vmax 

Kr=0.1 7.062 44.183 4.145    28.059 1.475     8.329 

Kr=1 10.205 90.656 7.549    68.422 3.232     23.659 

Kr=10 12.515 127.646 10.027    100.221 4.218     32.450 
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(a) Kr=0.1 

                                Da=10-1                    Da=10-3                    Da=10-4 

   
 

(b) Kr=1 

   
(c) Kr=10 

   
 

Figure 4. Steady state of isotherms for different values of Da and Kr. 

 

The fluid rises along the hot wall/porous surface and falls along the right cold wall, so 

thermal gradient is very important in these regions. For low Da and Kr the isotherms 

shown in Fig.4 (a) are almost parallel to the vertical walls, indicating that most of heat 

transfer is by heat conduction. As Da and Kr increase convection in porous part is 

initiated and temperature lines change their shape. For high Da and Kr (Da=10-1,  

Kr=10), we observe in Fig.4(c) a temperature stratification in the vertical direction and 

the thermal boundary layer is well established along the side walls,  as a consequence  

the development of convection mode of heat transfer. 

For poor conductive wall (Kr=0.1) where the solid part is an insulation material, the 

average Nusselt number is almost constant and having low values compared with those 

(Kr=1 and 10). This is a logical result since reducing the thermal conducting of the wall 

leads to the increase in thermal resistance of the overall system and therefore reducing

Nu . This indicates that most of heat transfer is dominated by conduction mode. In 

addition for high conduction wall (Kr=10) where the solid part is a good conductive 

wall convection heat transfer is strength and the solid layer tends to become an 

isothermal wall. 

 

 5.2 Average Nusselt Number and Interface Temperature 
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The rate of heat transfer across the cavity is obtained by evaluating the average Nusselt 

number at the active side walls. It is clear from the figure 5(a) that the average Nusselt 

number is more important for high Darcy numbers. It is increasing with the increase of 

Rayleigh number for a given Da. This means that convection heat transfer becomes 

more important for both high Ra and Da.  

 

Figure 5(b) shows for Kr=1 and Ra=106 the effect of Darcy number on wall/porous 

interface temperature. The temperature difference between the interface and the cold 

boundary ( 0 ) is small for porous medium with high permeability. It becomes more 

important with the decrease of Da, and leads to increase the average Nusselt number. 

The temperature profile across the wall/ porous interface is quite non uniform. This non 

uniformity has a noticeable effect on the flow field and the flow structure is asymmetric.  

 

 
                                    (a)                                                                    (b) 

 

Figure 5. (a) Variation of Nu  with  Rayleigh number Ra . (b) Variation of wall/porous 

interface temperature D 0.2, Kr=1.   

 

 

6.  CONCLUSION  

 

A numerical study of conjugate natural convection in porous medium was employed to 

analyze the flow and heat transfer of air filled in a square enclosure with thick and 

conductive left vertical wall. The following conclusions were summarized. Natural 

convection is strength by the increase of both Rayleigh number and conductivity ratio 

because of the increase of the effective temperature difference driving the flow. Flow 

velocity and thermal field are higher when the permeability medium is more important. 

The interface temperature is found to be quite non- uniform. This non uniformity tends 

to make the flow pattern in the enclosure asymmetric. Furthermore for poor conducting 

wall (Kr=0.1) and less Darcy number convection flow is dominated by heat conduction 

for both wall and porous layer.  

 

 

NOMENCLATURE 

 

D          dimensionless wall thickness  D=d/H  
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Da           Darcy Number  K/H2 

H          wall height              m 

K              porous permeability. 

Kr         thermal conductivity ratio Kr=kw/kf 

 kw            thermal conductivity of the solid wall   wm-1k-1 

kf          thermal conductivity of the fluid           wm-1k-1 

L        cavity length            m 

Nu      local Nusselt number,          

Nu      average Nusselt number,     

Pr       Prandtl number of the fluid        

Ra       Rayleigh number   gβH3(Th-Tc)/υα   

T         temperature             K 

t*          time                         s 

t           dimensionless time  t*/(H2/α)                    

u, v      velocity components        ms-1 

U, V    dimensionless velocity components u/(α/H),  v/(α/H)       

V          dimensionless velocity of the flow  

p          pressure    N.m-2 

P         dimensionless pressure  p/(α/H)2 

X, Y     non-dimensional Cartesian coordinates, x/H, y/H 

 

Greek symbols 

 

α*      thermal diffusivity ratio       αw / αf 

β        thermal expansion coefficient    k-1 

θ        non-dimensional temperature (T-Tc)/(Th-Tc)  

υ        kinematics viscosity                    m2s-1 

ψ       non-dimensional stream function YU    

               independent variable ( =U, V or θ) 

ɛ              porosity of porous medium 

 

Subscripts 

 

 c         cold  

 f          fluid  

 h         hot  

w         wall 

wf        wall/fluid interface 
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