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Abstract: The control volume finite element method (CVFEM) is employed to solve an inverse radition 

problem of source term in three-dimensional medium. The inverse problem is formulated as an optimization 

problem between the calculated and the experimental data and is solved by the Levenberg Marquardt method 

(LMM). The effects of measurement error, radiative parameters and number of measurement points on the 

accuracy of the inverse problem are investigated. The CVFEM-LMM combination, which is applied, to the 

knowledge of the author, for the first time to solve inverse source problem in 3-D enclosure, has been found to 

accurately predict the temperature distribution. 
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1. Introduction 

Inverse radiation problems governed by the integro-differential equation of radiative transfer have been 

studied extensively for their practical applications. The inverse analysis can be applied to determine the radiative 

properties of a medium or the boundary conditions or the source problem. 

Only a limited number of works is available in the literature on the solution of the inverse source radiation problems 

involving 3-D geometry. In fact, most of the work has considered one-dimensional [1-5] or two-dimensional [6-

10] system. 

For three-dimensional problems, Wang et al. [11], have presented an inverse radiation analysis based on the 

backward Monte Carlo method in a large rectangular enclosure using radiative intensities in the visible range. Liu 

et al. [12] have solved the temperature field in an inhomogeneous, absorbing, emitting and anisotropically 

scattering media from the knowledge of the exit radiative energy received by charge- coupled device cameras. 

 The main objective of this paper is to examine the accuracy of the CVFEM for estimating the 3-D 

temperature distribution in an absorbing, emitting and anisotropically scattering media. The analysis consists of 

the direct problem and the inverse problem. The effects of various variables such as errors in the measured data, 

number of sensors and system parameters on the accuracy of the inverse analysis will be investigated. 

2. Analysis 

  2.1  Direct problem 

  We consider an absorbing, emitting, scattering and gray medium. In this case, the mathematical formulation of 

the direct problem is given by  

                 ∇. (𝐼(𝑠, 𝜴)𝜴) = −(𝑘𝑎 + 𝑘𝑑)𝐼(𝑠, 𝜴) + 𝑆(𝑠) +
𝑘𝑑

4𝛱
∫ 𝐼(𝑠, 𝜴′)𝑃(𝜴, 𝜴′)𝑑

4𝛱

𝛺′                           (1) 

where 𝐼(𝑠, 𝜴) is the radiative intensity at position s  in the direction 𝜴, ka
 
and kd 

 
are absorption and scattering 

coefficients, respectively, 𝑃(𝜴, 𝜴′) is the scattering phase function from the incoming direction 𝜴′ to the outgoing 

direction 𝜴 and S(s) is the source term related to the temperature in the medium T(s) by 

                                                   𝑆(𝑠) =
𝜎𝑠𝑏𝑘𝑎𝑇(𝑠)4

𝜋
                                                                                            (2) 



The medium boundary surface is assumed gray and emits and reflects diffusely. So, the radiation boundary 

condition can be written as  

                𝐼𝑤(𝜴) =
𝜀𝑤𝜎𝑠𝑏𝑇𝑤

4

𝜋
+

1−𝜀𝑤

𝜋
∫ 𝐼𝑤(𝜴′)|𝜴′. 𝒏𝒘|𝑑𝛺′

𝜴′.𝒏𝒘<0
           𝑖𝑓     𝜴. 𝒏𝒘 > 0                           (3) 

where 𝜀𝑤 is the wall emissivity, σsb is the Stefan-Boltzman constant and 𝒏𝒘 is the unit normal vector to the wall. 

In the CVFEM, the spatial and the angular domains are divided into a finite number of control volumes and 

control solid angles, respectively. 

For the angular domain discretization (Figure 1), the total solid angle (i.e. 4π) is subdivided into (𝑁𝜃 × 𝑁𝜑) 

control solid angles ∆𝛺𝑚𝑛   as  

                                   ∆𝛺𝑚𝑛 = ∫ ∫ 𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑
𝜃+

𝜃−

𝜑+

𝜑−                                                              (4) 

                                                              

∆

                                                                           

where 

𝑁𝜃 : the number of control angles in the polar angle θ 

𝑁𝜑: the number of control angles in the azimuthal angle φ 

∆𝜃: the elementary polar angle as follows 

                                ∆𝜃 = 𝜃+ − 𝜃− =
𝜋

𝑁𝜃
                                                                                  (5)      

                           {
𝜃− = (𝑚 − 1)∆𝜃

𝜃+ = 𝑚∆𝜃

  ,        𝑚 = 1, . . , 𝑁𝜃                                                              (6)                                                                             

∆𝜑: the elementary azimuthal angle as follows 

                               ∆𝜑 = 𝜑+ − 𝜑− =
2𝜋

𝑁𝜑
                                                                                  (7)      

                           {

𝜑− = (𝑛 − 1)∆𝜑

𝜑+ = 𝑛∆𝜑
  ,       𝑛 = 1, . . , 𝑁𝜑                                                             (8)                                                                             

 

 

 

 
 

 

 

 

 

 

 

 

                

 

 

 

 

 

 

 

 

Figure 1 Angular discretization 
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For spatial discretization, the domain (𝒆𝒙, 𝒆𝒚) is subdivided into three-node triangular elements and control 

surfaces are created around each node N by joining the controids of the elements to midpoints of the corresponding 

sides (Fig. 2a). Then, to create the control volume ∆𝑉𝑖𝑗𝑘  (Fig. 2b), the control surface is multiplied by Δz for nodes 

within calculation domain (and by Δz/2 when nodes are in boundaries) where Δz is the step of calculation in 𝒆𝒛 

direction. 

After angular and spatial discretization, the radiative transfer equation is integrated over both control volume 

and control solid angle 

                           ∫ ∫ ∇. (𝐼(𝑠, 𝜴)𝜴)𝑑𝛺𝑑𝑉
∆𝛺𝑚𝑛∆𝑉𝑖𝑗𝑘

= − ∫ ∫ (𝑘𝑎 + 𝑘𝑑)𝐼(𝑠, 𝜴)𝑑𝛺𝑑𝑉
∆𝛺𝑚𝑛∆𝑉𝑖𝑗𝑘

              (9)                                   

                       + ∫ ∫ 𝑆(𝑠)𝑑𝛺𝑑𝑉
∆𝛺𝑚𝑛∆𝑉𝑖𝑗𝑘

+ ∫ ∫
𝑘𝑑

4𝛱
∫ 𝐼(𝑠, 𝜴′)𝑃(𝜴, 𝜴′)𝑑

4𝛱
𝛺′𝑑𝛺𝑑𝑉 

∆𝛺𝑚𝑛∆𝑉𝑖𝑗𝑘
  

 

To approximate the integrals that represent the extinction; emission and in-scattering contributions, the radiation 

intensity is considered constant within ∆𝑉𝑖𝑗𝑘  and ∆𝛺𝑚𝑛 and is evaluated at the centroid of the control volume and 

at the centre direction of the control solid angle. Then, the obtained algebraic equation of the RTE is formulated 

as a matrix system and is solved using the conditioned conjugate gradient squared method (CCGS). A detailed 

calculation can be found in Ref. [13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                            (b)                   

Figure 2 Spatial discretization. (a): Discretization in (𝒆𝒙, 𝒆𝒚)  plane, (b): Control volume ∆𝑉𝑖𝑗𝑘. 

 

  

2.1. Inverse radiation problem 

The estimation of the temperature distribution is achieved by a minimization of the objective function defined 

in Eq.(10). This function is expressed by the summation of the squared residues between computed incident 

radiation heat fluxes obtained from direct problem, qi(β), and measured incident radiation heat fluxes, 𝑌𝑖, at i 

measurement position 

                                                 𝐽(𝜷) = ∑ (𝑌𝑖 − 𝑞𝑖(𝜷))
2𝑙

𝑖=1                                                                          (10)  

where l  is the total number of the measurement points and 𝜷 is the vector of unknowns.  

The minimization of the objective function is performed by the Levenberg Marquardt method. 

The Eq.(10) can be written as follows 

 𝐽 = 𝑫𝑇𝑫    (11) 

where Di is the difference between the measured and computed incident radiation heat fluxes 

 𝐷𝑖 = 𝑌𝑖 − 𝑞𝑖(𝜷) (12) 

Minimizing J with respect to 𝜷 is equivalent to make its derivates equal to zero 

N 

 

 

 

 

 

 

 

 



 
𝜕𝐽

𝜕𝛽
=

𝜕(𝑫𝑇𝑫)

𝜕𝜷
= 0 (13) 

In this equation, the vector D is expanded in a Taylor series and only the first order terms are retained. To damp 

oscillations and instabilities due to the ill-conditioned character of the problem, a damping parameter, λ, is added 

to yield the LMM. The iterative process is expressed as 

                                                                  𝜷𝑘+1 = 𝜷𝑘 + ∆𝜷𝑘                                                             (14) 

where  

 ∆𝜷𝑘 = [(𝑿𝑘)𝑇𝑿𝑘 + 𝜆𝑘𝑰]−1(𝑿𝑘)𝑇𝑫𝑘                                                                                                  (15) 

I and X denote the identity and the sensitivity matrix, respectively and the superscript k denotes the iteration 

number. 

The elements of sensitivity matrix, Xij , are defined as the first derivative of the incident radiation heat flux at i 

measurement position, ∂qi(𝛃), with respect to the unknown parameter,𝛽𝑗 , that is, 

                                        𝑋𝑖𝑗 =
𝜕𝑞𝑖(𝜷)

𝜕𝛽𝑗

,             𝑖 = 1, … , 𝑙  𝑎𝑛𝑑 𝑗 = 1, … , 𝑛𝑝                                              (16) 

The iterative procedure is continued until the convergence criterion 

                                      |𝜷𝑘+1 − 𝜷𝑘| < 10−5                                                                                      (17) 

is satisfied.   

 

3. Results  

In order to obtain the measurement incident radiative heat flux at boundary surfaces, the direct problem is solved 

with known source term. Then, the obtained numerical solutions are considered as experimental data after adding 

small random noise: 

 

                                     𝒀 = 𝒒𝒘,𝒆𝒙𝒂𝒄𝒕 + 𝜁𝜎                                                                    (18) 

where 𝜁 is the Gaussian distributed random error within -2.576 to 2.576 for a 99% confidence bounds and 𝜎 is the 

standard deviation of measured radiative heat flux. 

We consider a three dimensional furnace (1m×1m×1m) enclosing an absorbing, emitting and anisotropic 

scattering medium. The scattering phase function of medium is assumed to be linear anisotropic, given as 

                                                        𝑃(𝜴, 𝜴′) = 1 + 𝑔𝜴. 𝜴′                                                                (19) 

where g is the scattering asymmetry parameter. 

The temperature distribution in the medium is considered as follows 

                                                   𝑇(𝒔) = 100 + 35𝑥 + 20𝑦 + 15𝑧                                              (20) 

Table 1 shows the specified values of the known parameters. 

ka (m-1) kd (m-1) g εw 

0.5 0.5 1.0 0.5 

Table 1: Specified values of the known parameters.  

The CVFEM is used to predict the incident radiative heat flux with (Nx×Ny×Nz) spatial control volumes and (6×4) 

control solid angles.  

For the sake of comparison, the maximum relative error Emax, the root mean square error Erms and the average 

temperature Tav are defined as following 

               𝐸𝑚𝑎𝑥 = 100 × 𝑚𝑎𝑥 |
𝑇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 (𝑠)−𝑇𝑒𝑥𝑎𝑐𝑡 (𝑠)

𝑇𝑒𝑥𝑎𝑐𝑡 (𝑠)
| ,           %                                               (21) 

               𝐸𝑟𝑚𝑠 = {
1

𝐿𝑥𝐿𝑦𝐿𝑧
∫ ∫ ∫ [𝑇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 (𝑠) − 𝑇𝑒𝑥𝑎𝑐𝑡 (𝑠)]2𝑑𝑥𝑑𝑦𝑑𝑧

𝐿𝑧

0

𝐿𝑦

0

𝐿𝑥

0
}

𝟏
𝟐⁄

                        (22) 

               𝑇𝑎𝑣 =
1

𝐿𝑥𝐿𝑦𝐿𝑧
∫ ∫ ∫ 𝑇 (𝑠)𝑑𝑥𝑑𝑦𝑑𝑧

𝐿𝑧

0

𝐿𝑦

0

𝐿𝑥

0
                                                                                 (23) 

 

Case1 

Table 2 shows the maximum relative errors of the temperature estimation for three different measurement error 

values of incident radiative heat fluxes on the walls. Two numbers of sensors used to measure incident radiative 

heat flux are considered l= 36 and l= 12 which corresponds to Nx = Ny = Nz =15 and Nx = Ny = Nz =7, respectively. 



From table 2 we note that increasing the standard deviation σ from 0 to 0.1, the accuracy of the estimation decreases 

and increasing the number of sensors l from 12 to 36, the accuracy of the estimation is improved obviously. When 

there is no measurement error in the data, the reduction of number of measurement points doesn’t affect the 

accuracy of estimation.  

 

 

 

σ 0 0.005 0.1 

l 36 12 36 12 36 12 

Emax (٪) 1. 29 

10-3 

1. 29 

10-3 

0.14 0.30 

 

1.92 3.97 

Erms (K) 1.08 

10-3 

1.08 

10-3 

7.58 

10-2 

0.12 1.07 2.25 

Erms/Tav (٪) 8.00 

10-4 

8.00 

10-4 

5.62 

10-2 

9.5 

10-2 

0.797  1.66 

 

Table 2: Maximum relative errors and RMS errors of the temperature estimation for different measurement error 

and for l = 36 and 12. 

Case2 

The effects of radiative parameter and boundary conditions on the accuracy of the inverse estimation are studied. 

It is assumed that the measured incident radiative heat fluxes have no measurement error. All the parameters are 

constant and equal the values mentioned in Table 1, except for the parameter that its effects are studied. The 

number of sensors is set equal to 12. 

The effects of absorption coefficient on the accuracy of inverse solution are shown in Figure 3. This figure shows 

the RMS error, Erms, versus absorption coefficient. As shown in Figure 3, within the range from ka = 0, to 1 m-1, 

all of the RMS errors are less than 0.09 K. The effects of absorption coefficient on the estimation are very small. 

The effects of wall emissivity on the inverse solution are shown in Figure 4. As shown in Figure 4, within the 

range from 0 to 1, the curve has a minimum in εw = 0.5 and the maximum RMS error is less than 0.7 K. The effects 

of wall emissivity are considered as small. 

   
Figure 3 Effects of absorption coefficient on the temperature estimation. 

 



 
 

Figure 4 Effects of wall emissivity on the temperature estimation.  

 

Case 3 

In the practical processes of measurement and inverse solution, the parameters given in Table 1 may have more or 

less random errors. In order to examine the effects of these errors on temperature estimation, it is assumed that all 

these parameters have normally distributed random errors and are produced as follows 

                                                             ʘ𝑗 = ʘ𝑗|
𝑒𝑥𝑎𝑐𝑡

+ 𝜎ʘ𝑗
𝜁                                                       (24) 

Here ʘ𝑗 could be absorption coefficient, scattering coefficient, wall emissivity or scattering asymmetry parameter.  

ʘ𝑗|
𝑒𝑥𝑎𝑐𝑡

 is the exact related value, which is brought in Table 1. 𝜎ʘ𝑗
 is the standard deviation of the parameter ʘ𝑗. 

Table 3 shows the maximum relative errors and the RMS errors of the temperature estimation for two different 

measurement error values of parameters with exact incident radiation heat fluxes  (σ = 0.0). The number of sensors 

is set equal to 12. It can be seen that the combined effects of the random errors of absorption coefficient, scattering 

coefficient, wall emissivity and scattering asymmetry parameter on the temperature estimation are small.  

𝝈ʘ𝒋
 0.005 0.1 

Emax (٪) 0.13 0.85 

Erms (K) 8.17   10-2 0.35 

Erms/Tav (٪) 6.05   10-2 0.26     

Table 3: Maximum relative errors and RMS errors of the of the temperature estimation for errors in system 

parameters with exact incident radiation heat fluxes for l = 12. 

In a real problem, existing errors in both measured data and system radiative parameters are probable. To study 

the combined effects of these errors on the temperature estimation, we consider in Table 4 different cases of the 

combination of 𝜎  and 𝜎ʘ𝑗
. Comparing Table 4 with Table 3 shows that the temperature estimation is more 

sensitive to existing errors in measurement errors of the incident radiative heat fluxes than errors in system 

parameters. As shown in Table 4, the reconstruction of the temperature is good even with noisy input data. 

𝝈 = 𝝈ʘ𝒋
 0.005 0.1 

Emax (٪) 0.29 4.23 

Erms (K) 0.13 2.31 

Erms/Tav (٪) 9.8 10-2     1.71     

Table 4: Maximum relative errors and RMS errors of the temperature estimation for errors in system parameters 

and measured data for l = 12.  



4. Conclusion 

An inverse radiation problem is solved for the temperature estimation in an absorbing, emitting and anisotropically 

scattering medium confined in a three dimensional furnace from the knowledge of incident radiative heat fluxes 

on the boundaries. The radiative transfer equation is solved by the CVFEM and the optimization is achieved using 

the LMM. Three test cases involving different number of sensors, system parameters and measurement errors are 

considered. The results of this study show that the CVFEM-LMM combination can predict accurately the 3-D 

temperature distribution.  
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