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Abstract  : In this paper, an enthalpic Lattice Boltzmann method formulation for 3-D unsteady convection-

diffusion heat transfer problems, is used to overcome discontinuity issues in heterogeneous media. The new 

formulation is based on the appearance of a source term added to the collision step. The major achievement of the 

proposed enthalpic LB formulation is avoiding any interface treatments or geometry considerations even when 

dealing with complex geometries. The performance of the present method is tested for several three-dimensional 

convection-diffusion problems. Comparisons are made with the Control Volume Method and numerical results 

show excellent agreements.  
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1. Introduction 

 
Due to its substantial significance, heat transfer in heterogeneous media is investigated by many researchers[1-

6]. This field is widely encountered in many domains such as energy engineering, cooling electronics or 

mechanical equipments, food engineering, and environmental control. Indeed, in a wide range of academic or 

engineering applications, media can be heterogeneous or compose, fluid flow and heat transfer are coupled. As an 

example of conjugate heat transfer problems, fluid flows occurring within ducts. One of the most common 

multiphase flows, where energy exchange occurs at interface between component is observed in evaporation 

process. In this specific thermal phenomena, thermo-physical properties can change sharply between components 

like liquid and it's vapor phase, or solid and fluid phases. 

Lattice Boltzmann Methods (LBM) is widely used to simulate successfully industrial and real life fluid flow 

problems in many specific topics like multiphase flows [7, 8], turbulent flows [9, 10], micro-fluidics [11,12], or 

deformable boundary [13]. Although it has many advantages, namely it's simple algebraic manipulation, it's easy 



solution procedure and implementation of boundary conditions, the lattice Boltzmann method still have some 

limitations. When trying to simulate conjugate heat transfer, one has to take into account the discontinuities 

existing at the interface between two components with different thermo-physical properties. Some researchers 

narrow studies on steady-state condition to avoid such constraints [14-16]. Indeed, once steady-state heat 

conduction is achieved, only the thermal conductivity plays a role in the solution for temperature distribution. The 

heat capacitance is not relevant anymore and one can, for simplicity, assume that heat capacitance is the same in 

all components. This strategy was presented for traditional CFD methods to simplifies computation[17]. Wang et 

al. [18] and Tarokh et al. [19] engage successful studies on this particular case. Unfortunately, those approaches 

lack of maturity against other CFD methods like Control Volume Method, among others, where discontinuities 

are easily overcome. For this reason improvements in the conventional LBM become a mandatory task. Up until 

recently, the common idea of most proposed researches was based on introducing  conjugate boundary conditions 

at interfaces to take into account the balance of energy in those particular regions (interfaces). Meng et al. [20] 

used double-spaces lattice Boltzmann model based on internal energy to resolve temperature scalar fields. The 

interface in this case close to the wall and fluid node in each internal direction and unknown distribution function, 

are treated by internal energy counter-slip boundary condition assuming that they are at equilibrium. Seddiq et al. 

[21] resolved distribution function at row node interface assuming that the ratio of their gradient is proportional to 

thermal conductivities ratio, this yields to an explicit expression for non tangential distribution function at interface 

using the solid-fluid relaxation parameter, where formulation of tangential one is obtained by supposing that their 

difference is proportional to the difference of their post-streaming distribution function. Li et al. [22] proposed to 

treat interface using Dirichlet and Neumann boundary based bounce back. The approach considers that boundary 

interface thickness is zero, this means that the interface nodes are common for the solid and fluid media. The 

formulation of distribution function of first interior node in each medium was derived, taking into account local 

geometry. Moreover, the spatial interpolation help to describe boundary shape, and the formulation is appropriate 

for curved boundary. Mohamad et al. [23] used finite difference scheme to calculate iteratively temperature at 

interface. Two approaches were proposed: considering the working medium whether as two separated medium or 

as a single medium. In the first one, the two media are treated independently and the value of unknown distribution 

function can be calculated using temperature at surface. In the second approach the two medium are treated as a 

single one. The technique is inspired from multi-grid technique, largely used in fluid flow simulation, the non 

equilibrium part is rescaled at interface whereas the relaxation time is the average of the relaxation time of two 

working media. The equilibrium part is calculated directly with temperature value.  

In the above mentioned studies, solutions proposed needs to localize exactly the interface boundary which 

predict complication of those techniques for the case of deformable boundary or multiphase flow where interface 

section can change position and shape during simulation. The procedure will be, obviously, computationally 

demanding. Moreover, most of the above cited studies take in consideration only the conservation of normal 

conductive heat flux. This restricts studies for fixed boundary whereas moving ones cannot be handled. Recently, 

some research studies begin to propose another approach by introducing an LBM formulation independent of 

boundary shape, and without interface treatment. Karani and Huber [24] introduced a source term for LBM 

formulation. The expression of the proposed source term is defined as the product of the gradient of volumetric 

heat capacity calculated by finite difference methods, and the total heat flux calculated locally. However, Hu et al. 

[25] assume that previous formulation suffer from mathematical rigor in differentiating a piecewise constant 



function, and proposed an adaptation of the technique in [24], by replacing the heat capacity of the solid phase of 

that of the fluid phase and provided proofs that by doing so, continuity of the normal heat flux is ensured even for 

the cases of curved interfaces.  

Nearly, a new lattice Boltzmann formulation based on enthalpic diffusion equation was proposed by Hamila et 

al. [26] to solve conduction in heterogeneous medium. A source term formulation was applied and the continuity 

of temperature and normal conductive heat flux was satisfied across components. Moreover no extra treatments 

were needed at interfaces. The method is greatly simple and can be easily implemented.  

In this paper the same approach is adopted and developed to perform three dimensional transient convection-

diffusion heat transfer problems for three dimensional problems. The performance of the present method is 

successfully validated by several three dimensional heat convection-diffusion problems in heterogeneous media. 

The remainder of the present paper is organized as follows; Section II presents the proposed three-dimensional 

enthalpic lattice Boltzmann formulation for unsteady convection-diffusion. Section III provides the validation of 

the proposed method through comparisons with Control Volume Method solutions of several test problems. 

Section IV concludes the paper. 

2. ENTHALPIC LATTICE BOLTZMANNFORMULATION 

The macroscopic heat transfer diffusion-convection equation takes the following form [27]: 

 
𝜕𝑇

𝜕𝑡
+ ∇. (𝑼𝑇) = ∇. (α∇. 𝑇)   

(1)  

where 𝛼 = 𝑘 𝜌𝐶𝑝⁄  is the thermal diffusivity , 𝜌 is the density, 𝐶𝑝 is the volumetric heat capacity, and 𝑘 is the 

thermal conductivity. 

The macroscopic diffusion-convection equation is recovered with Chapmann-Enskog expansion from the  

following BGK lattice Boltzmann equation [27]: 

 𝑓𝑘(𝒓 + 𝒆𝑘∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑘(𝒓, 𝑡) −
𝛿𝑡

𝜏
[𝑓𝑘(𝒓, 𝑡) − 𝑓𝑘

𝑒𝑞(𝒓, 𝑡)] 
(2)  

where 𝛿𝑡 denotes lattice time step, 𝒆𝑘 is the discrete lattice velocity. 𝜏 denotes the lattice relaxation parameter, 

𝑓𝑘 is the distribution function and 𝑓𝑘
𝑒𝑞

 denotes the equilibrium distribution function. 

The relaxation parameter and equilibrium function are defined as following: 

 𝜏 =
3𝛼

|𝒆𝑘|2
+

∆𝑡

2
 

(3)  

 𝑓𝑘
𝑒𝑞(𝒓, 𝑡) = 𝑤𝑘𝑇(𝒓, 𝑡) [1 +

𝒆𝑘𝑼

𝑐𝑠
2

] 
(4)  

𝑼 is the velocity vector, 𝑒𝑘 and 𝑤𝑘 represent respectively the discretized velocities and their corresponding 

weight. 

For the D3Q19 scheme, the value of the discretized velocities are [27]: 

 𝑒𝑘 = {

(0,0,0)𝑐,                                             𝑘 = 0
(∓1,0,0)𝑐, (0, ∓1,0)𝑐,                                           𝑘 = 1,2, … ,6          

(∓1, ∓1,0)𝑐, (∓1,0, ∓1)𝑐, (0, ∓1, ∓1)𝑐,                                    𝑘 = 7,8, … ,18                                 

   
(5)  

 

 𝑤0 =
1

3
, 𝑤1,…,6 =

1

18
, 𝑤7,…,18 =

1

36
   

(6)  

 



where 𝑐𝑠 represent the speed of sound on lattice, and 𝑐 = ∆𝑥 ∆𝑡⁄  with ∆𝑥 is the grid size. 

In general, the heat diffusion convection equation takes the following form: 

 
𝜕(𝜌𝐶𝑝𝑇)

𝜕𝑡
+ ∇. (𝜌𝐶𝑝𝑼𝑇) = ∇. (k∇. 𝑇)   

(7)  

For multi-domain problems, additional conditions should be applied at the interface between domain to ensure 

continuity of temperature and normal heat flux: 

 𝑇+ = 𝑇−  
(8)  

 𝒏. [𝑘∇𝑇 − 𝜌𝐶𝑝𝑼𝑇]
+

= 𝒏. [𝑘∇𝑇 − 𝜌𝐶𝑝𝑼𝑇]
−

  (9)  

𝒏 is the normal to the interface,+ and− denote parameter on either side of the interface. 

The conventional LBM formulation given by Eq.(2) solves Eq.(1) which allow Eq.(7) to be solved only in two 

simplified configurations: uniform heat capacitance 𝜌𝐶𝑝 and steady-state heat diffusion-convection transfer 

configurations. This restriction on conventional LBM can be demonstrated by writing a jump balance at interface 

to Eq.(1) 

 𝑇+ = 𝑇−  
(10)  

 𝒏. [𝛼∇𝑇 − 𝑼𝑇]+ = 𝒏. [𝛼∇𝑇 − 𝑼𝑇]− 
(11)  

This leads to: 

 𝑇+ = 𝑇− 
(12)  

 𝒏.
1

𝜌𝐶𝑝+

[𝑘∇𝑇 − 𝜌𝐶𝑝𝑼𝑇]
+

= 𝒏.
1

𝜌𝐶𝑝−

[𝑘∇𝑇 − 𝜌𝐶𝑝𝑼𝑇]
−

  (13)  

The Eq. (11) leads to Eq. (13) only when the heat capacity is the same:   

 𝜌𝐶𝑝− = 𝜌𝐶𝑝+ (14)  

In order to extend the LBM to solve general diffusion-convection equation [Eq.(7)], we begin by write the 

macroscopic convection-diffusion equation for an heterogeneous media composed by 𝑝 layers: 

 
𝜕(𝜌𝐶𝑝𝑙𝑇)

𝜕𝑡
+ ∇. (𝜌𝐶𝑝𝑙𝑼𝑇) = ∇. (𝑘𝑙∇. 𝑇)        𝑓𝑜𝑟  𝑙 = 1, … , 𝑝 

(15)  

In the above Eq.(15), we define a new enthalpic variable ℎ = 𝐶𝑝𝑛𝑇 to get Eq. (16) 

 
𝜕(ℎ)

𝜕𝑡
+ ∇. (ℎ𝑼) = ∇. (𝛼𝑙∇. ℎ) + 𝑆𝑙         𝑓𝑜𝑟  𝑙 = 1, … , 𝑝 

(16)  

where 

 𝑆𝑙 = [1 −
𝜌𝐶𝑝𝑙

𝜌𝐶𝑝𝑛

] [
𝜕ℎ

𝜕𝑡
+ ∇. (ℎ𝑼)]           𝑓𝑜𝑟 𝑙 = 1, … , 𝑝 

(17)  

and 

 𝛼𝑙 =
𝑘𝑙

𝜌𝐶𝑝𝑛

                                               𝑓𝑜𝑟  𝑙 = 1, … , 𝑝 (18)  

where 𝜌𝐶𝑝𝑛 is the heat capacitance of layer n. 

A jump balance at the interface between two layers ( 𝑙 𝑎𝑛𝑑 𝑙 − 1) leads to: 



 𝒏. (𝛼𝑙∇ℎ −
𝜌𝐶𝑝𝑙

𝜌𝐶𝑝𝑛

ℎ𝑼)
+

= 𝒏. (𝛼𝑙−1∇ℎ −
𝜌𝐶𝑝𝑙−1

𝜌𝐶𝑝𝑛

ℎ𝑼)
−

             𝑓𝑜𝑟  𝑙 = 1, … , 𝑝 (19)  

 ℎ+ = ℎ− 
(20)  

The two above equations (19) and (20) leads to continuity interface equation for temperature and its normal 

heat flux: 

 𝒏. (𝑘𝑙∇𝑇 − 𝜌𝐶𝑝𝑙𝑇𝑼)
+

= 𝒏. (𝑘𝑙∇T − 𝜌𝐶𝑝𝑙−1𝑇𝑼)
−

                  𝑓𝑜𝑟  𝑙 = 1, … , 𝑝  (21)  

 𝑇+ = 𝑇− 
(22)  

With the enthalpic formulation the jump interface conditions is satisfied for total heat flux and numerically the 

problem can be seen as a single medium. Moreover, the Eq.(16) can be solved directly with BGK-lattice Boltzmann 

equation (Eq.(2)) and 𝑆𝑙 is taken as an extra source term. This source term is discretized with Control Volume 

Methods (CVM) on a rectangular grid. For a three-dimensional case its expression is as below: 

 

𝑆𝑙 = [1 −
𝜌𝐶𝑝𝑙

𝜌𝐶𝑝𝑛

] [
1

∆𝑡
(ℎ𝑖,𝑗,𝑚,𝑡 − ℎ𝑖,𝑗,𝑚,𝑡−∆𝑡) +

1

∆𝑥
((ℎ𝑢)𝑖+1 2,𝑗,𝑚,𝑡⁄ − (ℎ𝑢)𝑖−1 2,𝑗,𝑚,𝑡⁄ )

+
1

∆𝑦
((ℎ𝑣)𝑖,𝑗+1 2⁄ ,𝑚,𝑡 − (ℎ𝑣)𝑖,𝑗−1 2⁄ ,𝑚,𝑡)

+
1

∆𝑧
((ℎ𝑤)𝑖,𝑗,𝑚+1 2⁄ ,𝑡 − (ℎ𝑤)𝑖,𝑗,𝑚−1 2⁄ ,𝑡)]            𝑓𝑜𝑟  𝑙 = 1, … , 𝑝  

(23)  

where 𝑢;  𝑣; 𝑤 denote respectively x-component, y-component and z-component of 𝑈 velocity vector and 𝑖, 𝑗, 𝑚 

denotes indices of lattice in 𝑥, 𝑦, 𝑧 direction 

For the convective terms appeared in the source term expression (Eq.(23)), an upwind scheme is used for their 

evaluations. Once 𝑓𝑘 are determined, the temperature can be deduced: 

 𝑇(𝒓, 𝑡) =
1

𝜌𝐶𝑝𝑛

∑ 𝑓𝑘(𝒓, 𝑡)
𝑘

   (24)  

The present method can be naturally extended to multiple relaxation time lattice Boltzmann models. 

3. NUMERICAL RESULTS 

In this section three dimensional conjugate heat transfer problems are solved through three benchmarks 

configurations, namely a diffusion-convection heat transfer problem inside a cubic duct and a 3-D Couette-Taylor 

inside a cubic medium. All numerical simulation tests are performed with D3Q19 lattice scheme. Results obtained 

by the proposed enthalpic lattice Boltzmann formulation are compared with Control Volume solutions.  

3.1. 3-D diffusion-convection heat transfer inside square duct 

To demonstrate the validity and accuracy of the proposed enthalpic formulation, we start by solving a three 

dimensional heat transfer inside a square duct. In such case, the discontinuities at the interface appear between 

duct walls and fluid domains. The wall duct is taken with a non null thickness as show in Fig. 1. The velocity 

profile of flow flowing inside the square duct is given by [28]. For a rectangular section of height 𝑏 and width 𝑎, 

and for  −𝑎 ≤ 𝑦 ≤ 𝑎 and −𝑏 ≤ 𝑧 ≤ 𝑏 , we have [28]: 

 𝑢(𝑦, 𝑧) =
16𝑎2

𝜇𝜋3
(−

𝑑�̂�

𝑑𝑥
) ∑ (−1)(

𝑖−1
2

) [1 −
𝑐𝑜𝑠ℎ (

𝑖𝜋𝑧
2𝑎

)

𝑐𝑜𝑠ℎ (
𝑖𝜋𝑏
2𝑎

)
]

∞

𝑖=1,2,…

𝑐𝑜𝑠 (
𝑖𝜋𝑦
2𝑎

)

𝑖3
   

(25)  

where �̂� is the effective pressure and 𝜇 is the viscosity. 



In the present simulation, two parametric sets of thermo-physical properties are performed: 

 Simulation (1): 𝐶𝑝𝑠𝑜𝑙𝑖𝑑 = 3.5, 𝐶𝑝𝑓𝑙𝑢𝑖𝑑  =  6, 𝑘𝑠𝑜𝑙𝑖𝑑 = 1.5,  𝑘𝑓𝑙𝑢𝑖𝑑  =  2 

 Simulation (2): 𝐶𝑝𝑠𝑜𝑙𝑖𝑑 = 4, 𝐶𝑝𝑓𝑙𝑢𝑖𝑑  =  3, 𝑘𝑠𝑜𝑙𝑖𝑑 = 1.5, 𝑘𝑓𝑙𝑢𝑖𝑑  =  2.5 

 

 

Fig. 1: Schematic of 3d square duct 

 

Initially, the temperature in the whole domain is set to 𝑇 =  0. Elsewhere, the temperature at the entrance 

section is set to 𝑇𝑥=0 = 0 and for the outlet section, the gradient of temperature is supposed null. The temperature 

at the external surface of the channel is set to 𝑇𝑤𝑎𝑙𝑙 =  1. 

In modeling boundary condition we adopt a non equilibrium bounce-back concept declaring that the incoming 

particle toward the solid boundary, bounce back inside the computation domain. 

 

 

Fig. 2: Comparison between the present enthalpic LB formulation (solid line), CVM (symbol) and conventional 

LB prediction (dashed line) of temperature distribution for the mid x-axis and mid z-axis at different time steps. 

(a): 𝐶𝑝𝑠𝑜𝑙𝑖𝑑 = 3.5, 𝐶𝑝𝑓𝑙𝑢𝑖𝑑  =  6, 𝑘𝑠𝑜𝑙𝑖𝑑 = 1.5, 𝑘𝑓𝑙𝑢𝑖𝑑  =  2, (b): 𝐶𝑝𝑠𝑜𝑙𝑖𝑑 = 4, 𝐶𝑝𝑓𝑙𝑢𝑖𝑑  =  3, 𝑘𝑠𝑜𝑙𝑖𝑑 = 1.5, 𝑘𝑓𝑙𝑢𝑖𝑑  =

 2.5  

 

𝑎 

𝑏 

(a) (b) 



Fig.2 show a comparison of temperature at mid x-axis and mid z-axis between the proposed enthalpic lattice 

Boltzmann (E-LBM) formulation, the Control Volume solution (CVM) and the conventional thermal lattice 

Boltzmann (T-LBM) predictions at transient period as well as steady-state. As intended, we can notice clearly the 

accordance between the enthalpic formulation and CVM predictions for all the performed tests and during 

transitional regime as well as steady state, while the conventional T-LBM gives erroneous results towards CVM 

predictions. In both two parametric simulations, there are no remarkable effects on the accordance between E-

LBM predictions and CVM results with the change of thermophysical properties ratios. 

Likewise, we mention that the results for the corners or edges interface nodes presents excellent agreement as 

shown for the temperature profile along the diagonal of the square duct (Fig.3), where 𝑥 = 𝑦 = 𝑧. For this 

particular locations where two edges meet and form a corner, no additional assumptions or modifications have to 

be done to the enthalpic LB formulation proposed. 

 

Fig. 3: Comparisons between present enthalpic LB formulation (solid line) and CVM prediction (symbol) of 

temperature distributions for square's diagonal at different time steps. 

 

              



Fig. 4: Sketch of three dimension comparison between the present enthalpic LB formulation (left) and CVM 

solution (right) temperature prediction for flow in square duct at different slices: 𝑥 𝐻⁄ = 0.1, 𝑥 𝐻⁄ = 0.5 and 

𝑥 𝐻⁄ = 0.9 at 𝑡 = 0.8 × 103𝑠 

Fig.4 shows a three dimensional qualitative comparison between enthalpic formulation and CVM method 

prediction of temperature distribution at different slice position along x-axis. Very good agreements are shown. 

 

 

3.2. 3-D Convection-Diffusion heat transfer in a partially heated Couette-Taylor 

 To demonstrate the ability of the proposed E-LBM formulation to deal with complex geometries, we 

simulate a 3-D Couette-Taylor conjugate convection-diffusion heat transfer problem. The geometry under 

consideration is a set of two co-axial cylinders plugged within a 3D square enclosure, where physically we suppose 

that the length of the enclosure is boundless. For the Couette-Taylor flow, only inner cylinder (𝐶1) is rotating with 

an angular velocity equal to 𝜔𝛼, whereas the external one (𝐶2) is fixed as show in Fig. 5.  

The analytical velocity profile between two co-axial cylinders is given by [29]: 

 𝑢(𝑟) =
𝛼

𝑟
+ 𝛽𝑟  

where constants 𝛼 and 𝛽 have the following form [29]: 

 𝛼 =
𝑟𝛼

2𝑟𝛽
2

(𝑟𝛽
2 − 𝑟𝛼

2)
𝜔𝛼  

 𝛽 = −
𝑟𝛼

2

(𝑟𝛽
2 − 𝑟𝛼

2)
𝜔𝛼   

The part of the bottom (𝑦 = 0) lateral external surface located between 0.3 <  𝑥 𝐻⁄  <  0.6 is heated at 𝑇 = 1, 

while the remaining surfaces are kept at imposed temperature 𝑇 = 0. At the other external surfaces ( 𝑥 =
0 𝑎𝑛𝑑 𝑥 = 𝐻) we impose a zero temperature gradient. Initially the temperature is set to 𝑇 = 0 in the whole 

domain. This present case put different challenges under investigation in order to demonstrate the capacity of the 

proposed E-LBM to correctly solve conjugate heat transfer in complex geometries. 

 
Fig. 5: Schematic of 3D Couette-Taylor problem 



            

 
Fig. 6: Comparison between enthalpic LB formulation (red solid line) and CVM (blue dashed line) solution of 

isotherms at slice 𝑥/𝐻 = 0.5 (a) :𝑃𝑒 = 0.5, ( b):𝑃𝑒 = 1,and (c):𝑃𝑒 = 2 at time 𝑡 = 0.024𝑠 

 

In first hand, the two interfaces between fluid and cylinders medium are curved. In the other hand, there are two 

velocity components in Cartesian coordinate due to the rotation of fluid resulting from the rotation effect of the 

inner cylinder. Simulations were performed with three different values of the Peclet number, 𝑃𝑒 =
𝑈𝐻

𝛼
 , where 𝐻 

is the side of the cube, 𝑈 the velocity and 𝛼 is the diffusivity. 

Fig.6 and 7 show a comparison of isotherms obtained by enthalpic LB formulation and CVM respectively at 

vertical mid plane and horizontal mid plane slice of the square. Obviously, the present comparison show good 

agreement. When varying the Peclet number (𝑃𝑒 = 0.5, 1 𝑎𝑛𝑑 2), the influence of dominated convective flow 

over diffusive heat transfer, and conversely is obtained. 

Fig.8 demonstrates a three dimensional contours results in which we show a three-dimensional quantitative 

comparison of temperature distribution predicted by the proposed enthalpic LB formulation and CVM solutions 

and evinces the three-dimensions effect along x-axis. 

 

           

(a) (b) 

(c) 

(a) (b) 



 
Fig. 7: Comparison between LB enthalpic formulation (red solid line) and CVM (blue dashed line) solution of 

isotherms at slice 𝑦/𝐻 = 0.5 (a) :𝑃𝑒 = 0.5, ( b):𝑃𝑒 = 1, and (c):𝑃𝑒 = 2 at time 𝑡 = 0.024𝑠 

 

  
Fig. 8: Sketch of three dimensions comparison between the present enthalpic LBM formulation  and CVM  solution 

temperature prediction for flow in Couette-Taylor with 𝑃𝑒 =  2 at different slice: 𝑥/𝐻 =  0.1, 𝑥/𝐻 =
 0.5, 𝑥/𝐻 =  0.9 and at time 𝑡 =  0.0184𝑠 

 

Conclusion  
 

 A new enthalpic formulation for Lattice Boltzmann method is proposed to overcome discontinuity issues 

existing with conventional thermal lattice Boltzmann method for heat transfer in heterogeneous medium. The 

proposed formulation satisfied the jump condition at component interface, by the presence of a correction source 

term, which as the same time is  seen by the conventional thermal LB equation as external source. Then, the 

enthalpic diffusion-convection equation can be solved directly with standard LB-BGK approximation. Even with 

his apparent simplicity the proposed E-LBM present no restrictions in correctly solving complex numerical 

simulations. In different tests released, the enthalpic LB formulation presents an excellent agreement with Control 

Volume Methods for unsteady-state as well as for the steady regime. The additional source term avoids any extra 

efforts to implement specific interface treatments owed in other researches. The method feature is validated with 

different interface type for both curved and straight shape.  

Finally, even if in all the presented tests simulated we only take a single-relaxation-time LB model, the extension 

to its multiple-relaxation-time counterpart is straightforward. 
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