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Abstract : Thermal field of homogeneous sheared turbulence subjected to system rotation is examined using 
second order modeling approach. In this fact, the Launder-Reece-Rodi model, the Speziale- Sarkar-Gatski model 
and the Shih-Lumley model are retained to closure a set of equations describing the turbulent flow. So, non 
dimensional modeled equations are solved numerically with the fourth Runge-Kutta method for values sequence 
of non dimensional rotation number. Then, the closure models are evaluated by comparing simulation results 
with recent ones of direct numerical simulations. Firstly, the predictions of retained second order models have 
confirmed the existence of asymptotic equilibrium states. Furthermore, these results have demonstrated the 
advantage of using the  Launder-Reece-Rodi and the Shih-Lumley models over the Speziale-Sarkar-Gatski 
model. Finally an important conclusion can be drawn that thermal field has been strongly affected by rotation.  
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1. Introduction  
Rotating turbulence can be found in many physical and industrial applications where rotation is 

accountable for fluid motion. Rotation is, in fact, detected in nature, especially oceanic current and 
atmospheric boundary as well as in industrial mechanical systems like turbomachines. As regards the 
dynamic of geophysical flows (oceanic or atmospheric), it is typically presented in meteorological or 
climatic studies for the atmosphere and waves or current studies for the ocean. As to turbomachines, 
there are systems that are liable to rotating motion setting of the flow. 
In this context, rotation turbulence remains of the big interest subject to study. And by this right, several 
experimental, theoretical or numerical works have been presented to explore and  to investigate 
turbulent rotating flows. Furthermore, second order modeling of rotating turbulent flow have 
constituted, since the last few years, a fundamental important purpose which offer the interesting 
alternatives and the promising progresses to describe and to analyze the kinematic field of 
homogeneous sheared turbulence submitted to the rotation. 
While kinematic field received considerable attention by authers, as Porosova [1], Speziale et al. [2], the 
thermal field have been enough considered. So that, we are motivating, in this work, to explore and to 
examine the effects of rotation on the thermal field in homogeneous sheared turbulence. For this fact, 
the three sophisticated second order closure models of Launder-Reece-Rodi [3], Speziale-Sarkar-Gatski 
[4] and Shih-Lumley [5] are retained here for the pressure-strain correlation, the pressure-temperature 
correlation and the transport equations of the kinematic and thermal dissipations of respectively the 
turbulent kinetic energy and the variance of temperature. The results of Direct numerical simulations of 
Brethouwer [6], which are in our opinion the most interesting work of the considered flow, have been 
retained to evaluate the second order closure models. We are interesting essentially to look for the 
prediction of equilibrium asymptotic states in the first time and to perform the capacity of the second 
order models to predict this asymptotic behavior at long time of dimensionless thermal parameters 
under effect rotation in the second time. 
In section 2, we will review the turbulent and the transport equations governing the flow and describing 
thermal rotating turbulence. Section 3 will describe the details of second order modeling. Section 4 will 



present numerical results and their discussion. Finally, in section 5, we will summarize our results and 
we will provide conclusions. 
 

2. Governing equations 
 

In this paper, some assymptions  are considered for fluid flow that is incompressible, the 
physical properties are constant and turbulence is subjected to constant mean velocity gradient as a rate 
S and to uniform solid-body rotation as a rate Ω.        

 
2.1. Turbulent equations  

 
Evolution equations of turbulent quantities using tensor notation in a rotating frame are the 

Navier-Stokes equations and the energy equation.  
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Where ν, α, δij and Ɛimp are kinematic viscosity, scalar diffusivity, the kronecker symbol and the 

alternating tensor. Here kU and T are respectively the mean velocity and the mean temperature while 

ku  and θ  are respectively the fluctuating velocity and the fluctuating temperature. 
 

2.2. Transport equations  
 

In this part, the evolution equations of second order moments are derived. In classical way, second 
order moments present a convective sight described by a transport equation. So, transport equations for the 

components i ju u of the Reynolds stress, the components iuθ  of the turbulent heat flux, the turbulent 

kinetic energy K, and the variance of temperature 2θ can be obtained from combination of different 
components of the momentum equation. Here, we are limited to present the transport equations describing 
thermal fields of turbulence. 
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3.  Second order modeling 
  

Transport equations of turbulent heat flux and variance of temperature can be written following 
this considered flow as: 
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dt θ θ
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Here terms denoted by P are terms of production due to mean kinematic and thermal gradients and they express 
interaction between mean and turbulent motion.  
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Terms denoted by Ɛ are terms of dissipation due to molecular effects of viscosity and thermal conduction. 
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Finally, iθφ is the term of pressure-temperature gradient correlation.  
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The nonlinearity of these terms give impossibility to integrate transport equations. So, to resolve this  closure 
problem, we resort to the second order modeling [7]. This last one, represents the term of production as exact 
and considers principally pressure-temperature gradient correlation that is classically decomposed on two 
contributions: 
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The first contribution is called slow part and it characterizes the nonlinear mechanism of interaction between 
turbulent fluctuations. The second contribution is called the rapid part. It is linear and bring to the fore a 
mechanism of interaction between turbulent and mean motions.  
For thermal field of homogeneous shear turbulent flow subjected to the rotation, two of the common second 
order models are retained. 
 

3.1. The Launder-Reece-Rodi model 
 

For the pressure-temperature gradient correlation, slow and rapid parts are written separately as follows: 
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3.2. The Shih-Lumley model 

 
The slow and the rapid parts are written respectively in the following forms [8]: 
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For θφ , it takes the following form : 
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In this expression β  is already given by:  
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bij is the anisotropic tensor of Reynolds b and, dII  and ijd  will be in these forms : 
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cr  is the characteristic time rate given by : 
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whereas ijkI  term is linearly function of  iuθ and his form [9]: 
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3.3. Nondimensional equations 
 

These last models have solved to closure the evolution equations in which is associated modeled 
transport equation of temperature variance dissipation that take this form: 
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In order to describe the thermal field behavior, nondimensional parameters are introduced as: the ratio of 
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Just now nondimensional equations can be written considering, for example, the classic model of Launder-
Reece-Rodi. These equations are given by: 
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In the same manner, others nonlinear equations can be written for the thermal field of turbulence using the 
Shih-Lumley model. 
 

4. Results and discussion 
 

In this work, we are studying rotation effects on the evolution of thermal field of homogeneous 
sheared turbulence. Pecular attention will be accorded, here, to equilibrium asymptotic behavior of 
dimensionless parameters, we have started by modeling a set of equations governing considered flow. 
In this fact, two of the most used second order models are retained for the thermal field as Launder-
Reece-Rodi and Shih-Lumley. But we have to precise that the speziale-Sarkar-Gatski (SSG) model has 
been retained, in addition to launder-Reece-Rodi (LRR) and Shih-Lumley (SL) models for the 
kinematic field, but also classic models for transport dissipation equations of respectively kinetic energy 
and temperature variance are furtheremore retained. 

Hence we refer by model 1 to LRR models separately for the kinematic and thermal fields, by 
model 2 to SSG model for kinematic field plus SL model for thermal field, and by model 3 to SL 
models separately for kinematic and thermal fields. 

On the second step, numerical integration for three nonlinear differential equations using the 
fourth order Runge Kutta method is approached. The numerical integration is carried out separately for 
the values 0, 0.25, 0.5, -0.25, -0.5, -0.75 of nondimensional rotation number R, right taking into account 
the initial conditions both of the Direct Numerical Simulation (DNS) of Brethouwer and the experience 
results of Tavoularis and Corrsin [10]. At long time evolution, a general tendency to equilibrium 

asymptotic states for dimensionless thermal parameters such as  1
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Table 1: Equilibrium values predicted for ρ1 

 
 Model 1 Model 2 Model 3 DNS 

R=0 -1.080 -1.120 -0.865 … 
R=0.25 -0.283 -1.460 -0.240 … 
R=0.5 … -1.800 5.440 … 

 
For the turbulent heat flux rate, the equilibrium values are observed in different cases according to 

models 2 and 3 on the contrary of the model 1 where absence of equilibrium values is observed for R=0.5.   
The effect of rotation can be felt on the dimensionless thermal parameter ρ1. In fact, growth of ρ1 is 
observed for the model 3 against a decrease of the same parameter for models 1 and 2.  
 



Table 2: Equilibrium values predicted for ρ2 
 
 Model 1 Model 2 Model 3 DNS 

R=0 0.963 0.297 0.616 0.800 
R=0.25 0.461 0.621 0.311 0.472 
R=0.5 … … -0.842 … 

 
 
        For the correlation coefficient ρ2 , there is tendency to equilibrium states for almost all the cases. ρ2 have 
been strongly affected by rotation; ρ2 Is decreasing nearly the half time for models 1 and 2 in accordance with 
DNS results, whereas, it is increasing nearly the half time for model 2. 
 

Table 3: Equilibrium values predicted for ρ3 
 
 Model 1 Model 2 Model 3 DNS 

R=0 1.410 2.440 0.834 0.846 
R=0.25 1.640 2.270 0.930 1.230 
R=0.5 … … … … 

 
 

For the dimensional ratio ρ3, equilibrium asymptotic values have been found for R=0and 
R=0.25where the thermal parameter is also affected by rotation with an increase of ρ3 for models 1 and 
3 in agreement with DNS results against a weakly decrease for model 2. 

 
 
In term of evaluating turbulence models, time evolution of dimensionless parameters versus dimensionless 
time St for two different rotation numbers are represented. So in figures (1.a) and (1.b), the asymptotic 
equilibrium behavior is observed for each of three models. A clear agreement can be seen between models 
1 and 2 with DNS results for 10St〉 for R=0, but a perfect accord is observed between models 1 and 3 in 
the way and DNS results in the other way for R=0.5. 
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Figure 1 : time evolutions of the turbulent heat fluxes ratio for the three models in the 
cases R=0 (1.a) and R=0.25 (1.b) 



 
 
In figures (2.a) and (2.b), agreement with DNS results can be seen on the time evolution of correlation 
coefficient according to model 1 for 4St〉  in the case R=0 and for 5St〉 in the case R=0.25. On figure 
(2.b), equilibrium state tendency is peculiarly observed, at long time evolution, with a strong nearly 
concordance with models 1 and 3.  
 
 
 
 

 

 
 

 

 
 
 
 
 
 
 
 
 
 

 
On figures (3.a) and (3.b), are plotted time evolution of thermal ratio  
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. In the case R=0, 

agreement is observed between model 1 and DNS results for 5St〉 but between model 2 and DNS results 
for 4 6St〈 〈 . 

          Equilibrium asymptotic behavior  is clearly observed according to the models 1 and 3 on the time    
          evolution  of ρ3. 
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Figure 2 : time evolutions of the correlation coefficient for the three models in the cases R=0 (2.a) 
and R=0.25 (2.b) 



 

 
 

 

 

 

 

 

5. Conclusions 
 

In this work, thermal field of homogeneous sheared turbulence in a rotating frame have been 
studied. Second order modeling have been carried out in order to closure a set of three nonlinear 
systems of equations obtained from retaining three common second order closure models that are called 
model 1, model 2 and model 3. After that, we are opting for numerical integration which is conducted 
by the fourth Runge Kutta method for various values of rotating number R, in order to analyze the 
prediction of equilibrium asymptotic behavior of dimensionless parameters describing thermal rotating 
turbulence. 

By means of this numerical study, equilibrium asymptotic states have been successfully 
confirmed through second order models retained here where the LRR and SL models have shown the 
most strong agreement with DNS results of Brethouwer. In addition, we have shown a considerable 
influence of rotation both on the time evolution of thermal parameters and on the equilibrium 
asymptotic values. 

        
      Nomenclature 

 
Symbol Name Unity Symbol Name Unity 

S mean shear rate s-1 / 2 / 3ij i j ijb u u k δ= −  Reynolds anisotropic 
tensor 

 

G mean temperature gradient 1Cm−°  / 2i ik u u=  Kinetic energy 2 2m s−
 

 
2 /R S= Ω  Dimensionless rotation 

number 
 

,p qU  Velocity gradient 1s−  
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Figure 3 : time evolutions of the ratio '
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θ for the three models in the cases R=0 (3.a) 

and R=0.25 (3.b) 
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