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Abstract : Lattice Boltzmann Method (LBM) with recently developed Link-wise artificial compressibility 
model (LW-ACM) is presented and an application to convective flow is executed. Simulations of thermo-
hydrodynamics with the Boussinesq approximation highlighted the robustness, accuracy and efficiency of the 
proposed methodology. Compared to the multiple-relaxation-time (MRT) implementation,  the main advantage 
of the new formulation is  its simplicity and suitability  for parallel implementations.  
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1. Introduction  

It is about twenty years ago that the Lattice Boltzmann Method, commonly called LBM, was introduced 
as a new alternative for the numerical simulation of physical phenomena that can address many problems in 
physics [1]. Lattice Boltzmann Method sustains today a rapid evolution in terms of physical models, computer 
implementations and engineering applications. The evolutionary process and the formulation of LBM can be 
highlighted as the following: The Lattice Gas Cellular Automat (LGCA), the continuous Boltzmann-BGK then 
the Grad’s Hermite-quadrature expansion.Since its development, LBM demonstrated a successful progress not 
only in solving viscous  flow problems [2]  but also in heat transfer area [4].  The first connection of the LBE to 
the Boltzmann equation has been established by He and Luo (1997). These formulations can construct models 
that recover incompressible Navier-Stokes equations. 

The Bhatnagar-Gross-Krook (BGK) approximation [5] is the most popular lattice Boltzmann model. This 
approach derived from the Enskog equation. In this model the collision operator requires the same relaxation 
time to each physical quantity. Although it’s simple implementation, the BGK-LBM suffers from numerical 
instability at high Reynolds (or Rayleigh number) number. To avoid this restriction, the direct way is to use a 
large number of grid points, however this will cost large computer resources and lower the computational 
efficiency. To remove numerical instability defects of LBM, some authors [4] used the multiple relaxation times 
model (MRT). The advantage of this model is that it has a maximum number of adjustable parameters. These 
parameters can be determined by optimizing the hydrodynamic properties of the model and linear stability 
analysis of the LBE evolution operator. Another way to remedy the stability problem in LBM, is to return into 
the definition of entropic definition of LBM. Some authors who refer to each other [6] used entropic lattice 
Boltzmann schemes. The derivation of ELBE can be performed in many ways and the most popular one derived 
from the analog of the discrete Boltzmann H function of standard extensive statistical mechanics [7]. 

The artificial compressibility method (ACM) introduced by Chorin in 1967 [8] to solve the 
incompressible Navier–Stokes equations (INSE) is recently developed with an easy formulation known as Link 
Wise Artificial Compressibility Method that benefits from some  similarities between its classic formulation and 
Lattice Boltzmann Methods (LBM) [9]. Asinari et al. [10] developed the LW-ACM by a finite set of discrete 
directions (links) on a regular lattice mesh similar to LBM and demonstrated the stability and accuracy of the 
proposed model. It should be mentioned that  the link between LBM and ACM was observed earlier by He et al. 
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[11] and they performed a comparison between the two methods. Their results showed that LBM and ACM are 
closely related to each other. The similarities between them appears in the continuous form of macroscopic 
governing equations while they differ from each other in their discrete forms. Also they found that difference 
between LBM and ACM do not affect the momentum results but it has an impact on the pressure fields. Obrecht 
and Kuznik [12] used an hybrid thermal LW-ACM to solve differentially heated cubic cavity. Their results 
showed that this scheme remains stable until Rayleigh number Ra = 10଼. In fact, LW-ACM can be used with 
double-population model  and simulate convective flows [13] and save the Memory usage compared to MRT-
LBM. Obrecht et al. [14] performed for a comparison between LW-ACM and LBM using  lid-driven cubic 
cavity flow problem. The obtained  results showed that LW-ACM is more accurate than multiple-relaxation-time 
LBM . 

 
2. LW-ACM for  dynamic and thermal fields 

The incompressible Navier-Stokes equations are in the following form. 

∇. u = 0                                                                                (1) 

∂୲u + Re × u. ∇. u = −∇p + ∇ଶu                                                        (2) 

The introduction of an artificial compressibility δ into the equation of motion do not affect the results and acts in 
the manner as the relaxation parameter in LBM. The ACM substitutes the equation of conservation of mass into 
the artificial compressibility equation (ACE) . 

        δ × ∂୲p + ∇. u = 0                                                                (3) 

The artificial density can be determined easily by using the equation of state p = ρ/δ . This yields an artificial 
speed of sound cୱ = 1/√δ . The  explicit time-marching and working on regular Cartesian grid make some 
analogies between ACM  and LBM .  

In LBM the particle distributions defined for the finite set of the discrete particle velocity vectors c୧ at a 
site r at time t is denoted f୧(r, t), i = 0. .8. In two dimension, the direction of a single particle probability 
distribution function is limited to nine directions as follows: 

c୧ = ቐ
(0, 0)

(±1, 0)
(±1, ±1)

�       
i = 0,

i = 1 − 4,
i = 5 − 8.

                                                                       (4) 

The link-wise artificial compressibility method (LW-ACM) is recently developed in the same manner as 
LBM models starting from  the ACM and using analog integration strategy. In this model the dynamic behaviour 
of the fluid is described by the evolution process of the distribution function in discrete velocity can be written 
as: 

f୧(r + c୧δ୲, t + δ୲) − f୧(r, t) = 2 ቀଵିτ
τ

ቁ ቀf୧
ୣ୯,୭(r + c୧δ୲, t + δ୲) − f୧

ୣ୯,୭(r, t)ቁ        (5) 

f୧
ୣ୯,୭(ρ, u) = ଵ

ଶ
ቀf୧

ୣ୯(ρ, u) − f୧
ୣ୯(ρ, −u)ቁ                                      (6) 

τ is the relaxation time and f୧
ୣ୯,୭ is the local equilibrium distribution function that has an appropriately prescribed 

functional dependence on the local hydrodynamic properties as follows: 

f୧
ୣ୯,୭(ρ, u) = ω୧ρ ቂ1 + 3u. c୧ + ଽ

ଶ
(u. c୧)ଶ − ଷ

ଶ
uଶቃ                                              (7) 

The weights ω୧ are given by :    ω = ସ
ଽ
, ωଵିସ = ଵ

ଽ
 and   ωହି = ଵ

ଷ
  .                                           

 
τ  is the relaxation time given by : 

τ = ଵ
ଶ

+ ଷν
ୡమΔ୲

                                                                   (8) 

cୱ is the speed of sound. The pressure and the flow velocity in lattice unit are obtained through moment 
summations in the velocity space as follows: 

p = ଵ
ଷ

∑ f୧(r, t)୧ , u = ∑ ୡ(୰,୲)
∑ (୰,୲)

                                                         (9) 

The conversion from lattice to physical units can be easily computed from the following equations: 

 p୮୦ = (p − p)/ϵଶ,   u୮୦ = u/ϵ,    ϵ = 1/N                                        (10) 
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N the number of mesh points along the characteristic length of the problem. 
To solve advection-diffusion equation for the temperature, we use D2Q5 model. We consider only five discrete 
velocities c୧ = {1, . .5}. the thermal evolution equation can be written as the following: 

g୧(r + c୧δ୲, t + δ୲) − g୧(r, t) = 2 ቀଵିτ
τ

ቁ ቀg୧
ୣ୯,୭(r + c୧δ୲, t + δ୲) − g୧

ୣ୯,୭(r, t)ቁ      (11) 

g୧
ୣ୯,୭(T, u) = ଵ

ଶ
ቀg୧

ୣ୯(T, u) − g୧
ୣ୯(T, −u)ቁ                                                (12) 

Where  
g୧

ୣ୯(T, u) = ω୧T ቂ1 + 3u. c୧ + ଽ
ଶ

(u. c୧)ଶ − ଷ
ଶ

uଶቃ                                              (13) 
            

The temperature in LBM unit is computing by conserving only the first moment: 

T = ∑ g୧(r, t)୧                                                                     (14) 

The relations between the diffusion coefficient and the relaxation time are taken as below: 

τ୲ = ଵ
ଶ

+
ଷ൬ ಒ

ಙి౦
൰

ୡమΔ୲
                                                                      (15) 

κ ρ and C୮ are the thermal conductivity, density and the specific heat capacity of the fluid. The   introduction of 
the force term can be done in various ways. It consists of changing the equilibrium distribution functions by 
applying the contribution of the force in each direction. The body force F gives rise to a buoyancy force F, and is 
defined from equation (6) such that. 

      F = 3ω୧
۴܋
ୡమ ;     ۴ = ρβ(T − T)(16)                                          

β is the thermal expansion coefficient of fluid and g is the gravity. With this formulation, the model solves the 
following energy equation: 

∂୲T + (u∇)T = ൬ ச
େ౦

൰ ∇ଶT                                                        (17) 

For computer implementation, the algorithm of the double population LW-ACM looks as follows: 
 
(i)  Initialisation of ρ, T, u and the distribution functions f୧

ୣ୯,୭(ρ , u), g୧
ୣ୯,୭(ρ , T). 

(ii) Advection of f୧ and g୧. 
(iii) Compute the equilibrium function f୧

ୣ୯,୭(ρ, u)  and g୧
ୣ୯,୭(ρ, T) using Eq.(4) .  

(iv) Apply the  boundary conditions. 
(v)  Compute conserved quantities ρ, T and u.             
(vi) If t reaches the specified convergence condition, then the computation is terminated. 
(vii) Otherwise, processes (ii)-(v) are repeated. 
 
2. Numerical experiments 
2.1. LW-ACM versus other LB models 

As it has been developed in section 1, there are several methods used to enhance LBM stability and 
accuracy. The LW-ACM is a new strategy in this issue. Some important points have to be discussed and 
analyzed before performing simulations using this model, such as: its efficiency in terms of rapidity and 
accuracy against BGK which is the most widely used model and MRT which is the most stable and accurate 
model [4]. We consider the classical 2-D natural convection in a square cavity heated differentially on the 
vertical side walls. This problem has been extensively employed as a standard benchmark for numerical methods 
and has been analyzed by a number of authors using a variety of solution procedures.  
The characteristic velocity in the buoyant flow Uୠ = ඥgβ∆TH is taken so that Mach number is within the 
incompressible limit and small compared with the speed of sound (Ma<<1). At all walls, bounce-back boundary 
conditions were applied. In this case, the incoming distribution functions turned back to the site where they are 
from. For thermal boundary conditions, two types of boundary conditions are used. One is the isothermal 
boundaries and the other is the adiabatic boundaries. For isothermal boundaries (Dirichlet type boundary 
condition) the normal equilibrium condition [15] was used  to determine the unknown densities. Results are 
assumed to be converged when  we reach the following convergence criterion. 
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∑ ฮ୳൫(୧,୨),୲ାଵ൯ି୳൫(୧,୨),୲൯ฮమ,ౠ

∑ ฮ୳൫(୧,୨),୲൯ฮమ,ౠ
< 10ି଼                                               (18) 

max൫หT൫(i, j), t + 1൯ − T൫(i, j), t൯ห൯ < 10ି                                   (19) 

The non-dimensionalized heat transfer at the isothermal walls is represented by the Nusselt number: 

    Nu = ∫ �ப
பଡ଼

ቚ
ଡ଼ୀ

dYଵ
 ≃ ∑ ଷ(,୨)ିସ(ଵ,୨)ା(ଶ,୨)

ଶ

ଵ                                      (20)    

Where θ is the adimensionalized temperature and M is the number of nodes in the y direction.  
 

The MRT-LBM code is validated for a two-dimensional simulation of Raiylegh-Bénard convection at 
different Rayleigh numbers was performed with a Prandtl number of 0.71 (air). The critical Rayleigh number for 
the onset of the Rayleigh-Benard convection is 1707.74 which agrees with the theoretical prediction [16]. As the 
Rayleigh number is increased higher, the steady two-dimensional convection rolls become unstable. The wavy 
instability and periodic motion observed are in good agreement with experimental observations and theoretical 
predictions. At the first levels of the simulation, the generation of the mushroom-like isotherms (plumes) is 
observed. It is caused by the instability and the instantaneous thickness in the conduction layer. This 
phenomenon can be observed in turbulent convection at high Rayleigh number [17]. The isotherms show a 
higher level of convective activity and a thin thermal  boundary layers. The boundary layer become more thinner 
compared to results of the convective flow with Pr=0.71. It is important to mention here that similar results of 
Snapshot contour plots are found experimentally by Sparrow [18] using  electrically heated horizontal copper 
surfaces situated in a water medium. They used electrochemica1 technique to facilitate physical observations. In 
particular, the transient state isotherms obtained at the beginning of the calculation with the MRT-LBM code 
reproduce the mushroom-like appearance as observed by in [18]. 

 
Another validation of the MRT-LBM code, is the resolution of the  mixed convection heat transfer of fluid 

over microscale vertical duct preceded with a double-step expansion. The fluid is injected into the channel at a 
cooler temperature ܶ  

and with a fully developed velocity profile.  Channel expansion ratio, ܣ =  ℎ, is taken/ܮ
equal to 30 and the overall length of the computational domain is ܮ = 35ℎ. The centerline velocity at the inlet 
and the fluid viscosity is taken so that Mach number is within the limit of incompressible flow. Thus, the 
magnitude velocity for both the buoyant and forced flows are taken small compared with the speed of sound 
(Ma<<1). The walls downstream of the step are maintained at a constant temperature ଵܶ , while the other walls 
are treated adiabatically. The results for mixed convection flow with air (Pr=0.71) have been compared with 
numerical results reported in [19] using finite-volume method. Computations were performed with 702×62 grid 
size. Velocity profiles at the particular axial position Y=5 for fixed Reynolds number Re=114 and for the 
Grashof number ranging from ݎܩ = 10ଶ to ݎܩ = 10ସ has been compared with those obtained by Tsui and Shu 
[19] in Figure 1. It is shown that numerical results of the MRT model compares well with the numerical data. 

 

 
Figure 1 : Velocity profiles at X = 5 and Re = 114 (Pr=0.71). 

 
In Table 1, we show computed Nusselt numbers and Processor time required with different models for 

Pr=0,71 and Ma=0,05 obtained by the BGK, MRT and LW-ACM method for Rayleigh number from 103 to 105. 
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As it can be seen from all chosen Rayleigh numbers, the LW-ACM model gives results closer to the reference 
[20] than the BGK model. As it was expected, MRT simulation gives analogous results as those reported in the 
reference even we  use a coarse mesh. The table provides the CPU time required to attain the steady state 
according to the prescribed criterion of the BGK, MRT, and LW-ACM schemes. Clearly, we can see that the 
CPU time for BGK model is the shortest.  It is true that MRT model is more accurate, but it requires more time 
to reach steady state. The results also show that, the MRT scheme is about 23% and 12% slower than the BGK 
scheme in terms of CPU time.  
 

Table1 : Computed Nusselt numbers and Processor time required with different models for Pr=0,71 and 
Ma=0,05. 

 

Ra Grid size 
 

Wang et al. (2013) BGK ∆ 
% 

CPU 
 

MRT ∆ 
% 

CPU 
 

LW-ACM ∆ 
% 

CPU 
 

 
103 

642  
1,1178 

1,1170 0,071 30,11 1,1174 0,035 40,11 1,1173 0,044 44,65 
1282 1,1171 0,062 63,31 1,1175 0,026 78,01 1,1174 0,035 70,23 
2562 1,1172 0,053 81,22 1,1178 0,0 110,22 1,1178 0,0 95,368 

   
 

104 
642  

2,2448 
2,2430 0,080 45,21 2,2445 0,013 54,26 2,2443 0,022 48,05 

1282 2,2436 0,053 76,02 2,2443 0,022 91,01 2,2440 0,035 85,67 
2562 2,2444 0,017 140,21 2,2446 0,008 180,41 2,2444 0,017 156,51 

            
 

105 
642  

4,5216 
4,5172 0,097 65,25 4,5185 0,068 80,21 4,5180 0,079 72,38 

1282 4,5185 0,068 150,21 4,5195 0,046 198,25 4,5193 0,050 171,32 
2562 4,5110 0,013 320,00 4,5202 0,030 400,25 4,5200 0,035 361,49 

 
 
In order to validate the LW-ACM code, the results for natural convection flow in a square cavity in which the 
fluid is heated from below and cooled from above have been compared with numerical results reported in the 
literature using finite-volume method. Average Nusselt number for Rayleigh number ranging from 103 to 105  
has been compared with those obtained by Clever and Busse [21] in Figure 2. It is shown that our numerical 
results compares well with the numerical and empirical data based on the formula ܰݑ = 1.56(ܴܽ/ܴܽ).ଶଽ. 

 
Figure 2 : Variation of Nusselt number for 2D Rayleigh-Bénard problem with Rayleigh number for Pr=0.71. 

 
2.2. Magnetic field effects on free convection 

To test the double population LW-ACM ability to solve more complex flows, we perform numerical 
study of the magnetoconvection in a square cavity. Recently, This problem sustains a considerable attention 
because of a number of its wide variety of applications in engineering and technology such as metallic alloy, 
magnetoelectrochemistry (MEC), astrophysical and environmental systems [22, 23]. Thus, it has been shown 
both experimentally and numerically that magnetic fields can be used to control thermal convection which is 
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important from problem involving the metallurgy, microstructure devices, protein crystals and under reduced 
gravity conditions . 

In order to evaluate the potential effects of magnetic fields in heat transfer area, some studies appears in 
recent years. Benos et al. [24] solved analytically and numerically two-dimensional MHD natural convection 
flow in an internally heated horizontal shallow cavity. Their comparison of the analytical and numerical results 
showed the validity and the correctness of their analysis. It is of interest to note that the recent progress in 
superconductivity and electric resistance of metals at very low temperature allowed researchers to reach larger 
magnetic fields up to 15 T by using super-conducting magnets. Naffouti et al. [25] performed numerical study of 
Rayleigh-Bénard magnetoconvection for different Rayleigh number, Hartmann number and inclination angle of 
magnetic field. Their results showed a decrease in heat transfer with the increase of both the Hartmann and 
Rayleigh numbers.  Effects of strong magnetic field on two dimensionnal natural convection have been studied 
by Pirmohammadi and Ghassemi [26]. They found that when Hartmann number is sufficiently large, the 
convection is suppressed. Bouabdallah and Bessaїh [27] conducted experimental and numerical study to present   
magnetic field effect on fluid flow and heat transfer during solidification from a melt. Their results showed a 
strong dependence between the solid/liquid interface shape, the intensity and the orientation of magnetic field.  
Gajbhiye and Eswaran [28] studied numerically the effect of an imposed magnetic field on Rayleigh-Bénard 
convection in constricted 2-D geometry. Their results showed that the flow solution abruptly turns from steady 
state to oscillatory flow as the Rayleigh number increases from Ra=8.103 to Ra=104. Ahmed et al. [29] 
performed numerical study of laminar magneto hydrodynamic mixed convection in an inclined lid-driven square 
cavity with opposing temperature gradients. Their results indicate that the rate of heat transfer along the heated 
walls is enhanced on increasing either Hartmann number or inclination angle. Average Nusselt number also, 
increased with increasing of the amplitude ratio for all values of the phase deviation.  Nasrin and Alim [30]  used 
the Galerkin weighted residual control volume finite element method to perform the effects of magnetic field and 
Joule heating on combined convection flow and heat transfer characteristics inside an octagonal vertical channel 
containing a heat-generating hollow circular pipe at the centre. Their results showed that that the flow and 
thermal fields in the vertical channel depend markedly on the Hartmann, Richardson and Joule heating 
parameter.  Kahveci and Öztuna [31] investigated the MHD flow and heat transfer in a tilted enclosure with a 
centered partition and found that for high Rayleigh numbers, the average Nusselt number shows an increasing 
trend as the inclination angle increases and a peak value is detected. Beyond the peak point, the trend reverses to 
decrease with further increases in the inclination angle. Ozoe and Okada [32] studied numerically three-
dimensional magneto convection with sample Prandlt number Pr=0.054 and two Rayleigh number 106 and 107. 
They found that external magnetic field perpendicular to the vertical boundary layer type flow is the most 
effective in cancelling the convective flow. However, the vertical component of magnetic field is not effective. 

In spite of the existence of many papers dealing with the interaction between convection and magnetic 
fields, there is as yet no complete understanding of magnetoconvection and further research works still needed to 
provide certain important feature. In this work, the cavity is filled with an electrically conducting, viscous and 
incompressible fluid with negligible viscous dissipation and radiation effects and a uniform and horizontal 
magnetic field  B  is applied. We assume that chemical reaction is negligible. The continuity (1), the extended 
momentum (2) and the energy equations (3) for natural convection flow under Boussinesq approximation can be 
written as follows: 

∇u = 0                                                                    (21) 
∂୲u + (u∇)u = − ଵ


∇p + ν∇ଶu + f ୠ + f ୫                                             (22) 

∂୲T + (u∇)T = ൬ ச
େ౦

൰ ∇ଶT                                                  (23) 

 
f ୠ is the buoyancy  force and f ୫is the magnetic force due to the presence of magnetic field defined as: 

f ୫ = ଵ


J × B                                                                   (24) 

Where J = σ(−∇ϕ + u × B) is the current density  obtained by using Ohm’s Law, ϕ is the electric potential.   
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Figure 3 : Illustration of the flow and boundary conditions of the problem. 
 
In the literature, the effects of magnetic fields on the steady flow at relatively low Rayleigh number have been 
thoroughly investigated [33]. However, their effects on transient flow at high Rayleigh number (Ra > 10) 
remains to be insufficiently understood and make the object of the present investigation.  
The effect of magnetic fields on natural convection flows for high Rayleigh number Ra = 10଼ and Prandtl 
number of 0.054 is studied. Figure 5 Shows streamlines and steady state isotherms at Rayleigh number Ra =
5 × 10ସ for different Hartmann number (Ha=0, 20, 40 and 60). For all chosen Rayleigh number, an adjustment 
in the flow pattern is observed when magnetic fields are applied. The rotational flow with a single elliptic vortex 
is observed for high Hartmann number. Isotherms become more uniformly spaced throughout the cavity and the 
intensity of convection is considerably decreased by the drag induced by the magnetic field, as indicated by a 
weak distortion of the isothermal lines. 
 

The magnetic field reduce the Nusselt number and the fluid velocity. When Hartmann number is 
sufficiently large, the mushroom-like isotherms (plumes) caused by the instability and the instantaneous 
thickness in the conduction layer become more thinner.  Without magnetic fields, the streamlines form two 
symmetrical vortex which keep the center of the cavity and when magnetic is applied with sufficient value of 
Hartmann number, the two vortex   move from the center of the cavity to the top. The bifurcation of the flow 
take place for all cases. The two large vortices appear on the center of the enclosure, but with increasing in 
Hartmann number, the two vortex are reduced in size located near the top and bottom of the right horizontal top 
wall. The core of vortex depends on the magnitude of magnetic field.  Also, the increase in the value of the 
magnetic field moves the vortex into the top wall where the temperature is cold. We note also a change in the 
shape of vortices from the circular shape to elliptical one. 

 
One of the application of such result is in melting processes of an electrically conducting fluid metals 

when the fluid motion presents turbulent convection flow. The applied magnetic field leads to stabilize or cancel 
unwanted oscillations in the flow. Figure 7 present the evolution of the averaged Nusselt number for different 
Hartmann numbers. The Nusselt number keep decreasing with respect of Hartmann number, we can highlight 
that when Ha=60, the effect of magnetic fields on the Nusselt number (and so on the heat transferred through the 
walls) is significant. 

 
Table 2 summarizes the averaged and overall Nusselt number along the hot wall versus Hartmann 

numbers. We observe that, in agreement with what has been concluded from thermal and flow fields in Figure 4, 
Nusselt numbers decrease with the increase of the Ha which has effect of suppressing the convection.  

 
Table 2 : Computed Average Nusselt number for different magnetic field magnitude. 

 60 40 20 0 ܽܪ
Average Nusselt number 4,261 4,185 2,850 2,768 
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Figure 4 : Streamlines, steady state isotherms and pressure contours (from left to right) at  Ra=50.000 for Ha=0-

60 (from top to down). 
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Figure 5 : Convergence of the average Nusselt number with different Hartmann number at  Ra=50.000. 

 
 
Conclusion 
In this work, a double population Link-Wise Artificial Compressibility Method (LW-ACM) has been developed 
to solve convective flows. Results of natural convection flows in a square cavity were compared and validated 
with those using BGK-LBM and MRT-LBM models and the accuracy of the prescribed model was evaluated. 
This trend demonstrates the robustness and the accuracy of the numerical method for engineering applications. 

 
 
Nomenclature 
 
Symbols 
 
݃         Gravitational acceleration. 
ܴܽ       Rayleigh number ܴܽ =  .ߙߥ/ଷܪܶ∆ߚ݃
 .cavity height         ܪ

݂         particle distribution function. 
݂
      equilibrium distribution function  for ݂. 

f୧
ୣ୯,୭  modified equilibrium distribution function  

for ݂. 
݃        energy distribution function. 
݃

      equilibrium distribution function  for ݃. 
g୧

ୣ୯,୭  modified equilibrium distribution function  
for ݃. 
ܽܯ Mach number in the simulation     ܽܯ =  .௦ܿ/ݑ
 .direction, respectively ݔ grid size  in     ݔܰ
 .local and average Nusselt number     ݑܰ
ܽܪ Hartmann number     ܽܪ =  .ߤ/ߪඥܪܤ
 

Greek symbols 
 
,ݔ∆  .regular steps         ݕ∆
∆ܶ         difference in temperature between the 
plates and the inlet fluid. 
ߙ =  .  thermal diffusivity, m2.s-1ܥߩ/݇
 coefficient of thermal expansion of the               ߚ
fluid, ିܭଵ. 
ρ           fluid density in lattice unit. 
  .dimensionless temperature             ߠ
 .௧    time stepߜ
 
Subscripts 
 
eq    equilibrium. 
bc        boundary condition. 
eq, o     local equilibrium distribution function. 
 

 
References 
[1] A. A. Mohamad, Applied Lattice Boltzmann Method for Transport Phenomena, Momentum’, Heat and Mass 
Transfer, Calgary, 2007. 
[2] Chen and Doolen, 1998 
[3] A. Mezrhab,  M.A. Moussaoui,  M. Jami, , H. Naji et M. Bouzidi, Double MRT thermal lattice Boltzmann 
method for simulating convective flows. Physics Letters A, Volume 374, Pages 3499-3507, 2010. 



10 
 

[4]  L.S.  Luo, W. Liao,  X. Chen, Y. Peng et  W. Zhang, Numerics of the lattice Boltzmann method: Effects of 
collision models on the lattice Boltzmann simulations, Phys. Rev. E, Volume 83, 056710, Pages 1-24, 2011. 
[5] P. L. Bhatnagar, E. P. Gross et M. Krook, A model for collision processes in gases. I. Small amplitude 
processes in charged and neutral one-component systems’, Phys. Rev., Volume 94, Pages 511-525, 1954. 
[6] S. Ansumali et I.V. Karlin, Entropy Function Approach to the Lattice Boltzmann Method’, Journal of 
Statistical Physics, Volume 107, No.1, Pages 291-308, 2002. 
[7]  S. Ansumali,  I.V. Karlin et H.C. Öttinger, Minimal entropic kinetic models for hydrodynamics, Europhysics 
Letters, Volume 63, No.6, Pages 798-804, 2003. 
[8] A. J. Chorin, A numerical method for solving incompressible viscous flow problems, Journal of 
Computational  Physics, Volume 2 (1), Pages 12-26, 1967. 
[9] T. Ohwada, P. Asinari et D. Yabusaki,  Artificial compressibility method and lattice Boltzmann method: 
Similarities and differences, Computers and Mathematics with Applications , Volume 61 (12), Pages 3461-3474,  
2011. 
[10] P. Asinari, T. Ohwada,  E. Chiavazzo et A. Di Rienzo,  Link-wise artificial compressibility method, Journal 
of Computational Physics, Volume 231, Pages 5109-5143, 2012. 
[10] He et al. (2002)   
[11] X. He et L.S. Luo, Lattice Boltzmann Model for the Incompressible Navier-Stokes Equation,  Journal of 
Statistical Physics, Volume 88, Pages 927-944, 1997. 
[12] C. Obrecht et F. Kuznik, Hybrid thermal link-wise artificial compressibility method. Physics Letters 
A,Volume 379, Pages 2224-2229, 2015.  
[13] C. Obrecht, P. Asinari, F. Kuznik and J. J. Roux, Thermal link-wise artificial compressibility method: GPU 
implementation and validation of a double-population model. Computers and Mathematics with Applications, 
Volume 72 (2), Pages 375-385, 2016. 
[14] C. Obrecht,   A. Pietro, F. Kuznik et J. J. Roux, High-performance implementations and large-scale 
validation of the link-wise artificial compressibility method, Journal of Computational Physics, Volume 275 
(15), Pages 143-153, 2014. 
[15] Q. Zou et X. He, On pressure and velocity boundary conditions for the lattice Botlzmann BGK model, 
Physics of Fluids, Volume 9, Pages 1591-1598, 1997. 
[16] Reid W.H., D.L. Harris, Some further results on the Bénard problem, Phys. Fluids , Volume 1 (2), Pages 
102-110, 1958. 
[17] J. J. Niemela, L. Skrbek, K. R. Sreenivasan and  R. J. Donnelly, Turbulent convection at very high Rayleigh 
numbers, Nature, Volume 404, Pages 837-840, 2000. 
[18] E. M. Sparrow, R. B.Husar et R. J. Goldstein, Observations and other characteristics of thermals, J. Fluid 
Mech., Volume 41(4), Pages 793-800, 1970. 
[19] Y.Y. Tsui et S.J. Shu, Effects of buoyancy and orientation on the flow in a duct preceded with a double step 
expansion, Int. J. Heat and Mass Transfer, Volume 41 (17), Pages 2687-2695, 1998. 
[20] J. Wang, D. Wang, P. Lallemand P., Li-Shi Luo, Lattice Boltzmann simulations of thermal convective flows 
in two dimensions,Computers and Mathematics with Applications, Volume 65, Pages262-286, 2013. 
[21] R.M. Clever, F.H. Busse, Transition to time-dependent convection, J. Fluid Mech., Volume 65 Pages 625-
645, 1974. 
[22] J.M. Borrero, S. Jafarzadeh, M. Schüssler et S. K. Solanki, Solar Magnetoconvection and Small-Scale 
Dynamo Recent Developments in Observation and Simulation, Space Science Reviews, Springer, in press, 2015. 
[23] N. Bekki et H. Moriguchi, Temporal chaos in Boussinesq magnetoconvection, Physics of Plasmas, Volume 
14, Pages 012306-1-8, 2007. 
[24] L. T. Benos, S. C. Kakarantzas, I. E. Sarris, A. P. Grecos et N. S. Vlachos, Analytical and numerical study 
of MHD natural convection in a horizontal shallow cavity with heat generation, International Journal of Heat 
and Mass Transfer , Volume 75, Pages 19-30, 2014. 
[25] A. Naffouti, B. Ben-Beya et T. Lili, Three-dimensional Rayleigh-Bénard magnetoconvection: Effect of the 
direction of themagnetic field on heat transfer and flow patterns, C. R. Mecanique, Volume 342, Pages 714-725, 
2014. 
[26] M. Pirmohammadi et M. Ghassemi,  Effect of magnetic field on convection heat transfer inside a tilted 
square enclosure, International Communications in Heat and Mass Transfer, Volume 36, Pages 776-780, 2009. 
[27] S. Bouabdallah et R. Bessaїh,  Effect of magnetic field on 3D flow and heat transfer during solidification 
from a melt, International Journal of Heat and Fluid Flow, Volume 37, Pages 154-166, 2012. 
[28] N. L. Gajbhiye et Eswaran, V., Numerical simulation of MHD flow and heat transfer in a rectangular and 
smoothly constricted enclosure. Int. J. Heat. Mass. Transfer, Volume 83, Pages 441-449, 2015. 
[29] S. E. Ahmed, M. A. Mansour et A. Mahdy, MHD mixed convection in an inclined liddriven cavity with 
opposing thermal buoyancy force: Effect of non-uniform heating on both side walls, Nuclear Engineering and 
Design. Nuclear Engineering and Design, Volume 265, Pages 938-948, 2013. 



11 
 

[30] R. Nasrin et M., A. Alim, Control volume finite element simulation of MHD forced and natural convection 
in a vertical channel with a heat-generating pipe, International Journal of Heat and Mass Transfer, Volume 55, 
Pages  2813-2821, 2012. 
[31] K. Kahveci et S. Öztuna,  A differential quadrature solution of MHD natural convection in an inclined 
enclosure with a partition,  ASME Journal of Fluids Engineering, Volume 130, 021102, 2008. 
[32] H. Ozoe et K. Okada, The effect of the direction of the external magnetic field on the three-dimensional 
natural convection in a cubical enclosure, Int. J. Heat Mass Transfer, Volume  32, Pages 1939-1954, 1989. 
[33] H. F Oztop,  M. Oztop et Y. Varol, Numerical simulation of magnetohydrodynamic buoyancy-induced flow 
in a non-isothermally heated square enclosure, Communications in Nonlinear Science and Numerical Simulation, 
Volume 14, Pages 770-778, 2009. 
 


