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Abstract: The present study is dedicated to a 2D-modeling of natural convection coupled with radiation in a square 

cavity partially heated from the sides and cooled from above. The computation of the fluid flow and heat transfer 

was carried out using the Lattice-Boltzmann method with the MRT collision scheme. The study was performed 

for a wide range of the internal surfaces emissivity (0  ε  1). The remaining parameters are the Rayleigh number, 

Ra = 106, the Prandtl number, Pr = 0.71 and the temperature difference T = 30 K. The results obtained are 

presented in terms of streamlines, isotherms, heatlines and Nusselt numbers. Preliminary tests of validation were 

successfully conducted and show that the numerical code is well adapted to treat efficiently such problems. This 

study revealed that the emissivity of the walls has a determining effect both on the flow structure and the heat 

transfer generated by the heating sources. 
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1. Introduction 

 

 The study of natural convection in closed rectangular cavities still arouses much interest given its 

omnipresence in daily life and in many industrial applications such as cooling of electronic components, thermal 

building, metallurgical industry, etc. An important part of the literature in this field is summarized in books by 

Bejan [1] and Yang [2]. Besides, numerous investigations that deal with convective heat transfer inside enclosures 

with different shapes and thermal excitations were conducted during the past few decades. Nevertheless, the study 

of natural convection combined with radiation constitutes a challenge for researchers doing experimental and 

theoretical works. In fact, in many applications involving natural convection as a removal of heat transfer 

mechanism, thermal radiation is present and could be neglected only if the involved temperatures are low and/or 

when the walls of the confining cavities have low emissivities, which is not the case in practice. Hence, several 

works have been performed on the coupled between natural convection and surface radiation, for a more reasonable 

approach of thermal convection problem. These studies have shown that radiation affects both dynamical and 

thermal characteristics of the working fluids and leads in general to substantial improvement of the total heat 

exchange between the confining boundaries. Among the earliest studies on the coupling between natural 

convection and thermal radiation in rectangular cavities, Larson and Viskanta [3] have examined the effect of 

surface radiation when coupled to laminar natural convection. Their results indicated that radiation dominates the 

heat transfer in the enclosure and alters significantly the convective flow patterns. Akiyama and Chong [4] 

analyzed numerically the interaction of natural convection with surface radiation in an air-filled square cavity. 

Their results show that the presence of emissive surfaces has a negligible effect on the average convective heat 



transfer while the radiative heat transfer rapidly increases with the emissivity of the internal surfaces. Moreover, 

Wang et al. [5] studied the effect of surface radiation on natural convection in a square cavity bounded by 

isothermal vertical walls and adiabatic horizontal walls. Detailed analysis showed that the net radiative heat flux 

varies linearly either with the imposed maximum temperature difference or with the dimensional height of the 

cavity. In the literature, most of the previous works devoted to problems involving natural convection coupled to 

surface radiation focused on rectangular cavities with horizontal or vertical temperature gradients. However, 

situations where the walls may be subject to various types of thermal non-uniformities are numerous and 

encountered in many practical applications. In this context, El Ayachi et al. [6] studied numerically the combined 

effects of radiation and natural convection in a square cavity submitted to two modes of cross gradients of 

temperature. There results showed that the first mode of heating (bottom wall heated and upper one cooled) leads 

to an important intensification of the flow circulation. The second mode (bottom wall cooled and upper one 

heated), with a basically stable vertical gradient temperature, leads to a slowdown of the fluid circulation. 

According to the same study, the contribution of radiation to the total heat transfer is generally important as much 

as the emissivity of the active parts of the internal surface is higher and the imposed temperature difference is 

important. Most of the existing numerical studies have solved such problems using conventional methods such as  

finite difference and finite volume methods. Thus, the objective of this work is to experiment the Lattice-

Boltzmann method with the MRT scheme to address a convection-radiation coupling problem in a square cavity 

partially heated from the lower parts of the vertical walls and cooled from above. 

 

 

2. Mathematical Formulation 

 
2.1 Problem description 

 The configuration under study is sketched in Figure1. It consists of a square cavity filled with air, cooled 

from above and partially heated from the vertical sides. The heated portions are placed at the lower half of the 

vertical walls. The remaining parts of the internal surface are considered adiabatic. Initially, the fluid was 

considered at a rest state with a uniform temperature 𝑇0 = (𝑇ℎ + 𝑇𝑐) 2⁄ . The study is performed for a wide range 

of the emissivity (0  ε  1) by setting constant the Rayleigh number (Ra = 106), the Prandtl number (Pr = 0.71) 

and the temperature difference (ΔT = 30 K). The reference temperature is taken to be 𝑇0 = 298 𝐾. 

 
Figure 1: Studied configuration 

 

2.2 Lattice Boltzmann method 

 

 The Lattice-Boltzmann method [7] used to simulate the fluid flow is based on the resolution of the following 

Boltzmann equation: 

)(),(),( ftrftttcrf     (1) 

The MRT scheme considers that the propagation phase, corresponding to the left-hand part of the above equation, 

occurs at the microscopic level in the space formed by the discrete velocities )8,..,0( kck  while the collision 

phase, represented by the operator Ω in Eq. (1), takes place in a macroscopic space formed by the moments of the 

distribution functions. The transition between these two spaces is insured by the following matrix M [8]: 

 

Mfm        (2) 

In the collision phase, the non-conservative moments undergo relaxations to an equilibrium state with different 

rates (MRT: Multi-Relaxation-Time) according to the relation: 
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The conserved moments, mass and momentum, are modified by the presence of the buoyancy force as follows: 
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In natural convection, the buoyancy force is deduced based on the Boussinesq approximation that considers density 

linearly depending from the temperature with the thermal expansion coefficient as a slope: 

)( refy TTgF       (7) 

After the propagation phase that persists during Δ𝑡, macroscopic values are calculated from the new distribution 

functions: 
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The boundary conditions are treated with the standard bounce-back scheme which insures the impermeability and 

no-slip of the fluid on the solid walls. 

The temperature is a scalar variable that can be assimilated to the fluid density. Thus, the energy equation can be 

solved using a thermal version of the MRT scheme considering a reduced lattice model; the D2Q5 with only five 

discrete velocities describing the possible streaming directions of the thermal distribution function g. This thermal 

model also consists of a series of collision and propagation phases after which the temperature field is obtained 

from the zeroth integration of the thermal distribution function over the directions of the D2Q5 model: 

kk gT 4
0      (11) 

The inner surface of the cavity was divided into elementary surfaces having at their centers the border nodes of 

the selected mesh. The radiosity 𝐽𝑟𝑑, the convection-radiation interaction parameter 𝑁 and the view factors of these 

elements are determined adopting the same approach as that in Raji et al. [9]. In the following, the results will be 

presented at a non-dimensional scale. 

 

The average convective Nusselt numbers along the top wall and the vertical heated portion are given by the 

following expressions, respectively: 
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The average radiative Nusselt numbers along the top wall and the vertical heated elements are respectively given 

by the following expressions: 
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In the oscillatory regime, the mean Nusselt numbers 𝑁𝑢𝑡 are obtained by time averaging 𝑁𝑢𝑐𝑣 and 𝑁𝑢𝑟𝑑 over  one 

flow cycle. The total Nusselt number stands for their sum.  

 

3. Results and discussion 

 
3.1 Validation of the numerical code 

 A part of this work is dedicated to the validation of the numerical code based on the MRT scheme. Our 

results were compared against those of El Ayachi et al. [6] obtained with a numerical code based on a finite 

difference method to study the coupling between natural convection and thermal radiation in a square cavity 

submitted to partial heating and cooling. The Prandtl number, Rayleigh number and emissivity of the walls were 

fixed at Pr = 0.72, Ra = 106 and ε = 0.5, respectively. Figure 2 shows quantitative and qualitative comparisons 

between our results and those of El Ayachi et al. [6]. These comparisons show an excellent agreement, with a 

maximum relative difference in terms of Nusselt Number of about 1.11 %. Thus, it can be concluded that the 

numerical code elaborated to study the coupling between natural convection and surface radiation, is well adapted 

to treat efficiently such problems. 

 



 
 

Figure 2: Comparison of the streamlines and isotherms obtained with our numerical code against those from ref. 

[6] for ε = 0.5 and Ra = 106. 

 

 

 The preliminary simulations carried out on our configuration showed the existence of an unsteady flow 

regime. Therefore, the results from the grid dependence test reported in table 1 correspond to time averaged values. 

From this table, the noticed maximum relative difference when the grid passes from 100×100 to 150×150 is about 

0.74%. It is about 0.13% when an extra refinement is considered from 150×150 to 200×200. Consequently, the 

refinement of the grid above 100×100 has a negligible effect on the obtained results and the latter grid was selected 

to deal with the present problem. 

 

 

Table1: Effect of the grid size on the mean Nusselt number at the cold wall and maximum of stream-function for 

Ra = 106 and ε = 0.5 

Grid size Nucv Nurd |𝜓|𝑚𝑎𝑥 

100×100 6.38 4.50 38.70 

150×150 6.41 4.51 38.41 

200×200 6.43 4.51 38.46 

 

 
3.2 Walls’ emissivity effect on the fluid flow 

 In this subsection, the effect of the emissivity of the walls on the flow structure is considered. As 

mentioned before, the preliminary simulations have shown the existence of both steady and unsteady flows 

depending on the value of the emissivity. Figure 3 illustrates the streamlines, isotherms and heatlines for the steady 

state flow in the case of pure convection (a), and for relatively low values of the emissivity (b, c) that are below 

the critical value leading to the unsteady regime. In figure 3a, the flow is dominated by two horizontal cells with 

a small vortex located in the lower-right corner of the cavity, showing the strong resistance of the upper positive 

cell to the breakdown under the effect of the negative one. By taking into account the effect of radiation, it can be 

observed from figures 3b and 3c that the bicellular flow structure is conserved. However, the small increase of  the 

emissivity of the walls, has engendered a significant reduction of the positive cell intensity in favor of that of the 

negative one. Lines corresponding to heat flux (heatlines) show a similarity with the streamlines and demonstrate 

the dominance of convective heat transfer over conduction mode (high values of the stream function). 

 



   

(a) 
 

𝜓𝑚𝑎𝑥 = 38.02            𝜓𝑚𝑖𝑛 = −32.53  

   

(b) 

𝜓𝑚𝑎𝑥 = 36.43            𝜓𝑚𝑖𝑛 = −33.44  

   

(c) 

𝜓𝑚𝑎𝑥 = 34.52            𝜓𝑚𝑖𝑛 = −34.76  

 

Figure 3: Streamlines, isotherms and heatlines for the steady regime: (a) ε = 0, (b) ε = 0.025 and (c) ε = 0.05. 

 

 By increasing progressively the emissivity of the walls while maintaining the Rayleigh number at 𝑅𝑎 =
106, an unsteady flow regime appears from a critical value of   (around 𝜀 = 0.1). Above this critical value of ε, 

the convection regime turns unsteady and the oscillations are periodic in time with relatively high amplitudes. This 

behavior is illustrated in figure 4, for  = 1, by presenting temporal variations of 𝜓𝑚𝑎𝑥  and  𝜓𝑚𝑖𝑛 . As it can be seen 

from this figure, the evolution of 𝜓𝑚𝑎𝑥 vs. time is the same as that of 𝜓𝑚𝑖𝑛 in absolute value with a phase shift of 

roughly a half period (T = 0.1617). The corresponding streamlines and isotherms at selected instants in figure 4 

during a flow cycle are presented in figure 5 to illustrate the changes undergone by the flow structure. According 

to this figure, the flow structure evolves between a vertical bicellular flow (P1-P5) and a horizontal bicellular flow 

(P2) passing from their mirror images with respect to the vertical (P3) and horizontal (P4) mid-lines, respectively. 

In addition to the main cells, small vortices appear intermittently at the corners of the cavity. Over this flow cycle, 

a remarkable competition between the two dominating cells is observed. After being heated from the adjacent heat 

source (right cell in P1/left cell in P3), one of these cells becomes lighter and moves above the other one (positive 

cell in P1/ negative cell in P3) trying to establish a good contact as large as possible with the upper cold wall. At 

this time, the above cell (positive cell in P1/negative cell in P3) discharge its heat load through the upper cold wall 

while the lower cell (negative cell in P1/positive cell in P3) is getting heated from the heat sources. As a result, the 

above cell/(lower cell) becomes heavier/(lighter) and tends to move down/(up) (P3) announcing the start of the 

second half of the flow cycle whose structure is symmetric to that in the first half. For such a case, the period of 

the Nusselt number on the upper cold wall/(heating portions) is expected to be the half of/(same as) the flow period. 



 
Figure 4. Temporal variations of 𝜓𝑒𝑥𝑡 for 𝜀 = 1. 

 

  

  

P1 (or P5): 𝜓𝑚𝑎𝑥 = 83.93, 𝜓𝑚𝑖𝑛 = −29.29 P2: 𝜓𝑚𝑎𝑥 = 46.76, 𝜓𝑚𝑖𝑛 = −23.21 

 

 

  

  

P3: 𝜓𝑚𝑎𝑥 = 29.04, 𝜓𝑚𝑖𝑛 = −84.25 P4: 𝜓𝑚𝑎𝑥 = 23.33, 𝜓𝑚𝑖𝑛 = −45.56 

 

Figure 5. Streamlines and isotherms at selected instants of the flow cycle. 
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3.3 Walls’ emissivity effect on heat transfer 

In the present subsection, attention is focused on the quantification of natural convection and radiation 

contributions to the overall heat transfer. Figure 6 shows the variations of the mean convective, radiative and total 

Nusselt numbers (time- averaged values of one flow cycle) versus the emissivity of the walls at the cooled and the 

heated walls of the cavity. From figure 6a, we note that, due to the dimension of the active portions, the top wall 

leads to higher convective heat transfer in comparison with that corresponding to each of the heating sources. The 

convective Nusselt number at the top wall increases with the wall’s emissivity up ε = 0.5 above which it starts to 

decrease slightly. Also, above this threshold value of ε, the vertical walls contribute with the same amount to the 

convective heat transfer. From figure 6b, we can observe that the radiative heat transfer of the left wall is less 

important than that of the right one for ε ≤ 0.5 (the role of the vertical walls is inverted if the image solutions are 

considered). Above this value of ε, the vertical portions contribute equitably to the radiative heat transfer but with 

amounts lower than that of the top wall. The effect of ε on the total heat transfer is presented in figure 6c. It can 

be seen from this figure that the total Nusselt number on each active wall is characterized by a linear increase with 

ε. More precisely, an improvement of the total Nusselt number on the left wall of about 193 % is noticed when the 

value of the emissivity passes from 0 to 1. Similarly, the total heat transfer is enhanced by almost 165 % for the 

right wall and 169 % in the case of the cold wall. These results show that radiation plays a non-negligible role in 

the heat transfer process since it contributes by important amounts of heat. Its effect could be neglected only for 

very particular situations (case of polished surfaces for instance).  
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Figure 6: Variations of the convective (a), radiative (b) and total (c) 

Nusselt numbers on the active portions versus ε for Ra = 106. 

 

 



 The contribution of radiation to the total heat transfer through the active walls of the cavity is quantified 

by presenting, in figure 7, the evolution of the ratio Rad = Nurd/Nut with . The ratio evolution is characterized by 

a monotonous increase with the emissivity of the walls. The contribution of radiation to the overall heat transfer 

is seen to become important and could not be neglected even for low to moderate values of the walls’ emissivity. 
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Figure 7: Effect of  on the contribution of radiation to the total heat transfer. 

 

 

Conclusion 
 

 A numerical investigation of natural convection coupled with surface radiation in a square cavity was 

carried out by adopting the MRT scheme of the Lattice-Boltzmann method. The half-lower parts of the vertical 

walls are heated and the upper horizontal wall is cooled. The obtained results show that the emissivity of the walls 

favors the transition from steady to unsteady periodic solutions from a critical value of  around 0.1. This means 

that the study of such problems would be dramatically truncated if the effect of radiation is neglected. The flow 

structures observed are characterized by a strong competition between the main positive and negative cells and the 

nature of this competition is realistically emphasized by examining the effect of . The numerical simulations 

revealed also that radiation contributes largely to the enhancement of the overall heat transfer and should be 

considered. 

 

 

Nomenclature 
 

f  vector of distribution functions 

g  vector of distribution functions relative to 

 temperature 

yF  buoyancy force 

g gravitational acceleration, m/s2 

m  vector of the moments of distribution 

 functions 

*m  vector of moment after the crash phase 
eqm  vector of moments in equilibrium 

J non-dimensional Radiosity 

N  convection-radiation interaction parameter 

Pr Prandtl number 

Ra Rayleigh number 

r  distance between two neighboring D2Q9 

 network nodes 

s  vector of the relaxation rate 

t  time step 

T  temperature, K 

cT  temperature of the cold wall, K 

hT  temperature of the hot wall, K 

refT  reference temperature, K 

T  difference temperature, K 

u x component of velocity 

v y component of velocity 

 

Greek symbols 

β expansion coefficient, K1 

ε emissivity (radiation) 

  collision operator 

𝜓 stream function 

 density, Kg/m3 

 

Subscripts 

cv convective 

rd radiative 

t total
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