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Abstract: Today’s world needs highly efficient systems that can fulfill the growing demand for energy. Among 

the promising solutions are fuel cells. Solid Oxide Fuel cell (SOFC) is considered as an alternative eco-friendly 

and efficient solution for electrical and thermal power generation in the near future. Mathematical modeling of 

transport phenomena within a SOFC has been the subject of various investigations. Recent advances in the 

lattice Boltzmann method (LBM) have made possible the simulation of mass transfer in complex geometry i.e. 

the porous microstructure of SOFC anode. Lattice Boltzmann method (LBM) modeling of SOFC mass transfer 

phenomena can give accurate understanding and description of the pore-level design and can have a significant 

impact on the SOFC microstructure optimization and thereafter on the efficiency and durability enhancement of 

the cell. As an example application, a one species LBM mass diffusion model coupled with a Thermal Lattice 

Boltzmann Method (TLBM) is developed here. Both artificially and real scanned image porous media were 

treated as porous anode to provide geometry input to the LBM model. Some preliminary, two dimensional (2D) 

results are presented for velocity profiles, density and thermal distribution inside the SOFC anode. Future work 

involves extending the LBM to multi-component mass transfer model and validation of model predictions with 

experiments. 
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1. Introduction 

 
Solid oxide fuel cell (SOFC) is an energy conversion system that converts chemical energy of several fuels to 

electricity with high efficiency. Conventional SOFC essentially consists of porous anode and cathode layers 

separated by a dense ceramic electrolyte. These electrodes have pore sizes ranging from nanometers to 

micrometers. The anode is a ceramic-metal composite (cermet). The electrolyte has the ability to conduct oxide 

ions (O
2-

) at high temperatures. Mass transfer of the H2 fuel takes place from the gas channel and through the 

anode pore space to the electrochemical reaction sites called three-phase boundary (TPB) at the anode/electrolyte 

interface. Oxygen ions travel through the electrolyte and through part of the anode structure until reaching the 

anode TPB. Electrochemical reactions at the anode TPB essentially lead to the combination of the oxygen ions 

with fuel (H2) to produce (H2O) and free electrons (2e-). The H2O must then diffuse back through the pores in 

the anode to the gas channel while the electrons must travel through the electrically conducting solid phase of the 

anode to the current collector to provide useful work.  

Because the SOFC operates at a high temperature, hydrocarbons fuels can be directly reformed within the anode 

to generate H2, eliminating the need for pure H2 as fuel. This reforming takes place via heterogeneous and gas 

shift reactions at active sites [1]. Significant technological and economic hurdles must be overcome before 

finding widespread acceptance for SOFCs. Some of the challenges include durable designs that can withstand 

higher temperatures (up to 750 °C) and ensure an enhancement in the delivered power density of the SOFC via 

microstructure optimization.  

Mathematical modeling can play a crucial role in predicting SOFC performance under a wide range of operating 

conditions via a deeper understanding of the underlying transport phenomena that drive its operation.  



Because of the intimate coupling between mass transport, heat transport and electrochemical reactions inside the 

SOFC and because of the complex porous geometry, modeling transport processes in a SOFC is not an easy task 

even if detailed geometric information about the pore structure is available.  

The majorities of SOFC models are developed at the macro scale and approximate the electrode microstructure 

by parameters like pore diameter, porosity and tortuosity and adopt a system level approach to predict the SOFC 

performance. While this is useful, it does not permit a deeper understanding of the influence of electrode 

geometry at the micro scale. The electrode microstructure is quite complex and, until recently, the use of 

reconstructed 3D images as inputs for SOFC transport models is scarce [2]. At micro- and meso-scale, Lattice 

Boltzmann Method (LBM) appeared as powerful tools for modeling several engineering applications including 

especially complex geometries. Although LBM is a relatively new actor among the numerical modeling 

methods, some works has already been carried out on solid oxide fuel cells. LBM has recently compared with 

conventional methods such as FDM, FEM and FVM when modeling SOFCs transport processes [3].  

The LBM method is described in detail by Joshi research group [4-7] and is used usually to describe the mass 

diffusion process from 2D to 3D system. In their recent work, The LBM was used to study the 3D mass diffusion 

of three species (H2, H2O, and N2) in the pore phase of a porous SOFC anode. The method used is an extension 

of a 2D LBM model [7] to study mass transport in SOFC anodes [6]. They modeled 3D porous anode geometry 

using a set of randomly packed and overlapping solid spheres. Results using this simple geometry model are 

compared with results for an actual SOFC anode geometry obtained using X-ray computed tomography. Using 

the LBM micro-model, the effective diffusivity which is a parameter widely used in models through several 

empirically relationships is calculated for different geometries and for a range of porosity values, both for the 3D 

sphere packing model and for the real geometry. They used the LBM model then to predict species mole 

fractions. They subsequently used the mole fraction variation to calculate the concentration losses and compared 

predictions with their previous 2D model results. They demonstrated the model capability in accurately 

predicting SOFC concentration polarization losses. 

The LBM model is a powerful tool that can be used to simulate SOFC electrodes behavior without empirically 

modifying the diffusion coefficients using medium porosity and tortuosity when detailed imaged geometry data 

are used as input for the LBM model. Grew et al. [8] examined the role and importance of the porosity and 

tortuosity of the electrode structure, catalytically active area and species mole fractions at the fuel channel on the 

direct methane internal reforming using a coupled electrochemical kinetic based on detailed reforming reaction 

mechanism with a 5 species mass transfer LBM model. Among their more interesting results, the inlet CH4 and 

H2 mole fractions have been systematically varied demonstrating a strong coupling between the structure, 

transport and reaction processes.  

An LBM model using 3D micro-structural data and active-TPB density was applied by Guan et al. [9] to 

simulate the ternary gas diffusion (H2, H2O and N2) in the connected pore channel of a SOFC. The effect of 3D 

microstructure and active-TPB density on the gas transport is discussed, and the concentration polarizations of 

the anodes during thermal cycling were calculated. Obtained results by the above-mentioned non-destructive 

imaging technology indicate that the pore connectivity and active-TPB density influence the concentration 

polarizations at the TPB sites. 

Although the simulation of isothermal problems has reached a great success, the development of a thermal model 

is always a challenge. All the developed thermal models can be classified into two main approaches which are: 

The multispeed approach and the double distribution function approach. The multispeed approach, introduced by 

Garcia et al. [10], used a single distribution function f, similarly to the previous approach (mass problem), and a 

higher order of velocities to take into account the temperature field. It has been shown that this model suffers 

from stability problems and can be applied only for a limited temperature range [10]. Recently, Abbassi et al. 

[11] developed a thermal LBM method to study the radiative effect on the temperature distribution through a 

planar SOFC system. They used a single distribution function to get the temperature profile. The reaction –

diffusion processes are not investigated.  The 2D thermal model results showed that the highest temperature is 

located in the electrolyte layer. They demonstrated that heat transfer via radiation could be neglected despite the 

use of SOFC solid ceramics layers and higher operating temperature. They demonstrated later that the radiative 

effect does not change the temperature profile while it causes a slight decrease in the temperatures inside the 

SOFC domains [12]. Shan [13] improved McNamara model by simulating the temperature field using an 

additional component (an additional distribution function�), as a way to avoid the numerical instability. This 

was the first attempt to utilize double distribution function models. Stability of thermal models was improved 

further, in 2003, by Lallemand and Luo [14]. Several models have been performed based on the latter model 

approach beginning with the work of He et al. [15] who introduced an energy distribution function. It consists on 

an improvement to the quasi-double distribution function model of Shan, since it takes into account the viscous 

dissipation effect and compression work. 

Peng et al. [16] worked on the same problem as He et al., but neglected compression work and viscous 

dissipation for incompressible limit, a fact that simplifies considerably the model initially proposed. Based on 

Peng work, D’Orazio and Succi [17] added a force term to take into account the viscous heating. Advances have 



been made for thermal double distribution function models until developing a simplified thermal model by Shi et 

al. [18] in 2004. Azwadi and tanahachi [19] have utilized the same model of Shi et al. [18] but used two different 

lattice models for each distribution function: D2Q9 for solving mass or momentum problem using the 

distribution function �, and D2Q4 for solving temperature field using the distribution function �. 

 

In the present paper, Shi et al. [18] thermal LBM model will be adopted for simulating temperature profile in the 

porous anode layer of a solid oxide fuel cell. Globally, various aspects have been studied, from treating mass 

transfer problem to electrochemical reactions inside the SOFCs. Nevertheless, thermal aspect taking into account 

the energy field in the simulation, i.e. coupling heat and mass transfer investigation inside the solid oxide fuel 

cell is quite rare and is the main subject of this paper. Then, a non-isothermal flows will be simulated as an 

application of the thermal Lattice Boltzmann method, coupling thermal and mass phenomena. A first benchmark 

of a flow in a rectangular channel will be discussed. Hence, simulation of velocity and thermal flow around a hot 

sphere will be performed. A further step towards modeling mass and thermal flow in the porous SOFC anode is 

the simulation of flows in two anode geometries. One is build up with an artificial porous media where randomly 

placed spheres are heated and the other one is obtained by image treatment carried to a real scanning electron 

microscopy (SEM) image.  

 

2. Lattice Boltzmann Method 
2.1. LBM modeling basics and mathematical formulation 

In the last few years, Lattice Boltzmann Method (LBM) was shown as a promising alternative to the traditional 

CFD approach that is well-suited to simulate fluid flow and diffusion through porous media involving single or 

multiple liquid or gas components. LBM is not the first method in the discrete approach. It is closely related to 

the family of methods, which ultimately preceded it, the Lattice Gas Automata (LGA). 

The term "lattice gas" refers to a family of cellular automata [20-21], which have been proposed as a new 

technique for the numerical study of Navier Stokes equations, and are based on simple microscopic systems 

substituting the direct integration of partial differential equations.  

 

LBM is known as a bridge between the continuum methods and the discrete methods thanks to its ability to study 

the behavior of a package of particles instead of a single sub-atomic particle. It permits to make approximations 

of several physical phenomena at the micro and also macro-scale level through knowledge of the average 

characteristics of the package of particles. Conventional CFD methods use fluid density, velocity and pressure as 

the primary variables, while LBM uses a more fundamental approach with the so-called particle velocity 

distribution function (PDF). The PDF permits the analysis of the millions of particles motion according to a 

statistical description. PDF is a function of the position and time of the package of particles which is defined as 

the number of particles of the same species traveling a particular direction with a particular velocity. 

The domain that will be solved has to be divided into lattice points called also lattice nodes. Each lattice point 

has velocity connections with its neighborhood. The common way to represent the lattice arrangement is called 

DnQm where n is the space dimension and m refers to the number of discrete velocities used in the lattice. For 

2D flows, the Boltzmann model with nine velocities denoted by D2Q9 is the most used scheme (Figure 1). To 

simulate 3D flows, there are different lattice models such as D3Q15, D3Q19, D3Q27... etc. The choice of a 

Lattice depends on the required accuracy, the complexity of the problem, memory space available etc...  

 
Figure 1: Illustration of a lattice node of the D2Q9 model 

 

The LBM essentially consists of two basic steps that are carried out at each node point that is not inside an 

obstacle: streaming and collision. The collision process is local, while streaming process is the only way to 

propagate the information from one node to the neighboring nodes. Streaming represents movement of particles 

of each species along specified, nearest neighbor lattice directions ��� �� = 0,1,2,3,4,5,6,7,8�. These velocity 

directions are based on the D2Q9 model adopted in this work. The collision term represents interactions between 

the particles as they arrive at any given node.  



The collision operator used in this work for the PDF is the Bhatnagar, Gross and Krook (BGK) collision operator 

which is the most used one in LBM models thanks to its simplicity, linearity, and so the low programming cost. 

It proved a good accuracy in various simulation cases especially in the case of single phase problems. It was 

used also in solving problems of chemically reacting gas mixtures, i.e multi-component flows [22]. BGK model 

has some shortcomings that came mainly from the single relaxation parameter of the collision term. In fact, with 

a single relaxation time constant, we cannot adjust independently the macroscopic transport coefficients, such as 

bulk and shear viscosities. In order to increase the number of tunable coefficients, we need more relaxation 

parameters, such as the case of the Multiple-Relaxation-Time (MRT) model [23]. 

 

The latter two steps are combined together in Eq. (1), which is called the Lattice Boltzmann equation:  

 ��� +  ���  ∆� , � + ���  ∆� , � + ∆�� −  �(�, �, �)  =  "#$% (��(�, �, �) − �&',�(�, �, �)   (1) 

The relaxation time for the distribution function��()� is given in terms of kinematic viscosity: 

 * = #+ ,τ. − #/0          (2) 

 

The equilibrium distribution function is expanded using the second order Taylor expansion of ��and given as 

follows for every direction 1 of the domain: �&',� = 2�ρ 41 + +(56.8)9: + ;/ (56.8):
9< − +/ 8:

9:=   (3) 
 

Where > is the density,  � is the particle velocity and ? is the fluid velocity.The lattice speed (@ = ∆� ∆�⁄ ) is 

fixed to 1 as discrete length step ∆� and discrete time step ∆� are often chosen as 1. 

For the selected D2Q9, the weight factors (2�) are:  
2� = B 4 9⁄                        1 = 01 9⁄            1 = 1, 2, 3, 4 1 36⁄           1 = 5, 6, 7, 8D(4) 

 

The discrete velocity (��) in every direction 1 represents the coordinates of vectors in the Lattice model and are 

taken as follows for D2Q9 scheme. 

 

�� = E(0,0)                                                                   1 = 0(1,0), (0,1), (−1,0), (0, −1)             1 = 1, 2, 3, 4(1,1), (−1,1), (−1, −1), (1, −1)      1 = 5, 6, 7, 8D (5) 

 

The speed of sound(@F) for the D2Q9 is constant (@F/ = 1/3) and is function of the lattice velocity (@F = 9√+ =IJKL/M. The equilibrium distribution function related to the speed of sound will be: 
 �&',� = 2�ρ 41 + (56.8)9N: + (56.8):

/ 9N< − 8:
/ 9N:=  (6) 

 

As elucidated in previous sections, Lattice Boltzmann Method solves the Boltzmann equation at a mesoscopic 

scale. Nevertheless, the purpose is to find the numerical results solved by the Navier-Stokes equations. That's 

why we need to recover the Navier-Stokes equations at the macroscopic scale. The procedure used to recover 

these equations is the Chapman-Enskog, a multi-scale analysis, introduced separately by Chapman and Enskog 

between 1910 and 1920 [24]. The expansion is elaborated using two main parameters which are the Mach 

number, and Knudsen number. The latter one is defined as the ratio between the mean free path of a gas 

molecule and a macroscopic length scale.  

 

Once Eq. (1) is solved, the macroscopic variables (>, ?) in the discrete form can be recovered by taking the 

weight M = 1: >(�, �, �) = ∑ ��(�, �, �)P�QR     (7) 

 ?(�, �, �) = #S ∑ ����(�, �, �)P�QR    (8) 

Another distribution function used to simulate the temperature field is � and is expressed as follows: 

 ��� +  ���  ∆� , � + ���  ∆� , � + ∆�� −  �(�, �, �)  =  "#$T (��(�, �, �) − �&',�(�, �, �)       (9) 

 



Where τU represent the relaxation timefor the distribution function �and is given in terms of thermal diffusivity 

(Eq.10): � = #+ ,τU − #/0  (10) 

The equilibrium distribution �&',� is given by: 

 �&',� = 2�ρT 41 + (56.8)9N: =                          (11) 

 

The macroscopic temperature is computed as follows: 

 > L(�, �, �) = ∑ ��(�, �, �)                     P�QR (12) 

 

The coupling between mass and heat transfer phenomena occurs in the exchange of velocity field between the 

two distribution functions (� and �). In fact, the computation of �� in the collision step utilizes the values of (�&',�) which in its turn contains the velocity values (Eq.11). These velocity values also occur in the equilibrium 

function (�&',�). Therefore a coupling mass-temperature is proved.  

The relation between the SI units and the Lattice units is formed by using the parameters ∆� and ∆�, which are 

the discrete space step and time step, respectively. First the conversion to dimensionless system was carried after 

choosing the appropriate characteristic parameters including the characteristic length ℓR, time �R and velocity ?R. 

The obtained dimensionless parameters (�X, ℓX, ?X, *X  and Y�X) are defined in Table 1. 

 

Table 1: Dimensionless parameters. 

 

Dimensionless time �X = �Z/�R 

Dimensionless length ℓX = ℓZ/ℓR 

Dimensionless velocity ?X = �RℓR ?Z 

Dimensionless viscosity *X = �RℓR/ *Z 

Dimensionless Reynolds Y�X = ?R,XℓR,X*X  

 

The discretization is handled through the equations given below defining the discrete space interval ∆� as the 

reference length divided by the number of cells [ usedto discretize this length. In the same way, ∆� is defined as 

the reference time divided by the number of iteration steps ([�\&]) needed to reach this time. Both reference 

variables are unity in the dimensionless system. 

 ∆� = #̂
          (13) 

 ∆� = #^6_`a       (14) 

 

Similarly to the renormalization from physical system to dimensionless system, the discrete parameters 

implemented in the LBM model are defined in Table 2. 

 

Table 2: Lattice parameters equations. 

 

Length in Lattice units ℓbc = ℓX/∆� 

Velocity in Lattice units ?bc = ∆�∆� 

Kinematic viscosity in Lattice units *bc = ∆�∆�/ *X 

Reynolds in Lattice units Y�bc = ?R,bcℓR,bc*bc  

 

Using the lattice units, the relationship between the relaxation time and the lattice viscosity is given by: 

 ( = def9N: + #/    (15) 



2.2. Boundary conditions 

 

The boundary conditions in the LBM do not have the same concept as the boundary conditions applied in 

computational fluid dynamics (CFD) models. In LBM, the role of boundary conditions is evaluating the 

unknown distribution functions fi at every boundary. Figure 2 shows the unknown distribution functions that we 

need to calculate at every boundary. Note that the unknown functions are those pointing to the inside of the 

domain. 

 
Figure 2: unknown distribution functions in each boundary. 

 

2.2.1. Mass boundary conditions 

 

Bounce-back boundaries, also called no-slip boundary conditions, are the typical boundaries for simulating the 

interaction of fluids with a non-moving wall without slip. In addition, they are used to simulate the flow around 

obstacles. They are largely used because they ensure the mass, momentum and energy conservation, apart from 

their simplicity, their good numerical stability and accuracy. As the name implies, when a particle is coming 

towards the solid boundary it bounces back into the flow domain. In this work, Full-way bounce-back is used to 

implement no-slip (zero-velocity) walls. �g, �h, �P are known from streaming process. It is assumed that when 

these known distribution functions hit the wall, bounce back to the solution domain. Therefore, �i = �h, �/ = �g 

and �j = �P. 

 

When the periodic boundaries are applied in one direction, the domain of the simulation changes to cylindrical 

geometry as shown in Figure 3. The nodes placed in the boundary, where the periodic condition is applied, have 

its neighboring nodes on the opposite boundary [25]: 

 
 

 
 

 

Figure 3: cylindrical shape of the domain after periodic boundary conditions applications. 
 

The distribution function �g, �h, �P are unknown on the line (� = k) and �/, �i, �j are unknown on the line (� =1). The periodic boundary is written as follows: 

 

- Along line (� = k): �g�Ql = �g�Q#
, �h�Ql = �h�Q#

, �P�Ql = �P�Q#
 

- Along line (� = 1): �/�Q# = �/�Ql
, �i�Q# = �i�Ql

,�j�Q# = �j�Ql
 

 

Zou and He [26] introduced the velocity (Von-Neumann) boundary condition that implements a certain flux 

condition on the boundary [27]. A velocity is specified ? = (?�, ?�) at the boundary, from which a density is 

computed, and thus, the distribution function values are calculated to achieve the distribution that implies the 

fixed velocity. In this work, the conditions of this type of boundary conditions applied at the west boundary are 

given by the following equations: 

 
 > = )mn):n)<n/()on)pn)q)#"8r                                                (16) 

�i = �h − #/ (�/ − �g) + #j >?� + #/ >?�                         (17) 

 �P = �j + #/ (�/ − �g) + #j >?� − #/ >?�                         (18) 

 

Line y=1 

Line y=L 



The Pressure (Dirichlet) boundary condition was also developed by Zou and He [26] analogously to the velocity 

boundaries. They calculate the unknown distribution function values using the imposed density. In this work, the 

conditions of this type of boundary conditions applied at the west boundary are given by the following equations: 
 ?� = −1 + #S (�R + �# + �+ + 2(�/ + �i + �j)       (19) 

�g = �/ − /+  >?�                                                      (20) �h = �i − #/ >?� − #j >?� + #/ (�# − �+)                    (21) �P = �j − #/ >?� − #j >?� − #/ (�# − �+)                    (22) 

 

At the east boundary condition which represents the outlet condition, the unknown distributions �+, �j and �h are 

given by the following equations: �+� = 2�+�"# − �+�"/             (23) �j� = 2�j�"# − �j�"/             (24) �h� = 2�h�"# − �h�"/             (25) 

 

2.2.2. Thermal boundary conditions 

 

Several works have been performed to implement accurate thermal boundary conditions [28-29]. Some types of 

boundary conditions are applied exactly in the same way as isothermal LBM models, such as open boundary 

conditions and periodic boundary conditions since they are intuitive.  

At the west boundary, we imposed L�s, the unknown distribution functions �/, �j and �;, and their values are 

given by: �j = L�s(tj + tP) − �P          (26) �/ = L�s(t/ + tg) − �g          (27) �; = L�s(t; + th) − �h           (28) 

 

2.3. Numerical approach 

 

The algorithm of LBM model starts with initializing the problem. The domain size is defined (number of nodes 

in every direction). For the case of the flow past obstacles, we should specify the diameter of the obstacle (flow 

past a sphere...). While for the case of porous media, we ought to specify a binary mask to distinguish the 

obstacles from the other part of the domain. By specifying the kinematic viscosity of the fluid and the inlet 

velocity, Reynolds number is calculated. After initialization, the basic steps of LBM will be computed i.e. 

collision and streaming. There are some boundary conditions that must be placed after the streaming step due to 

their role in determining the unknown distribution functions caused after streaming, and must be calculated 

before that particles enter in collision. Macroscopic values computation can be evaluated either after streaming 

or after collision. After calculating macroscopic values, a convergence test is applied to ensure the steady state. 

If the steady state is not reached yet, we pass to the next time step. Then, visualizations are presented. Taking 

into account all these conditions, the algorithm adopted is described by Figure 4. 

 

 
Figure 4: LBM algorithm.  



Stability of LBM model is affected mainly by two important parameters which are the

discrete velocity. Concerning relaxation time, there have been

on the computation results stability. 

the program will be instable. This condition 
 

The discrete velocity must be kept, in practice, below or equal to 0.2 (

incompressibility condition of the fluid [48]. In fact, Mach number
 

Where ubc  is the discrete velocity and 

 

At the end of the LBM algorithm, a convergence test must take place in order to be

reached. The steady-state simulation is

satisfies the condition [32]: 
 Mv�
 

The used value of maximum error is 

convergence (relative) among other types such as absolute convergence except for the case when the 

denominator is near zero. In this work, 

close to zero. 

For simulations carried using the real SOFC microstructure, 

convergence is employed: Mv��Q#:^rxQ#:^y
z

The used value of maximum error is 

 

3. Results and discussion 

 

3.1. Mass diffusion LBM results 
 

3.1.1. Flow around a sphere: Laminar viscous flow

 

As a preliminary step in simulating diffusion through more complex geometries, the 2D LBM model is first used 

to model transport of hydrogen species through a cylindrical tube parallel to the x

(Figure 5). The sphere is 10 (lu) dia

are applied at the inlet (velocity) and outlet (density). Periodic boundaries are applied at the top and bottom 

walls. Simulation parameters illustrated in Table 3.

Table 

Figure 5: domain details for a flow around
 

 

 
 

 
 

In Figure 6 (a), the velocity field is presented to illustrate that LBM can easily handle the obstacles in a porous 

domain by the bounce-back effect for the particles at the obstacle wall. A high velocity appears at the top and 

bottom of the domain which are related to the confinement of the fluid between the obstacle and the wall 

boundary. This is in good alignment with the fact that for the same flow rate, the decrease of passage surface 

induces higher velocities. The lowest velocities are located around 

the separation region. Figure 6 (b) present the streamlines around the sphere and showed that the laminar regime 

is proved, due to the smooth distribution of streamlines around the sphere. Flow in the wake regi

separated as there is absence of "eddies" or small packets of fluid particles.

 

ected mainly by two important parameters which are the

discrete velocity. Concerning relaxation time, there have been investigations done [30-31

 According to Eq. (2), the kinematic viscosity (*) must be 

This condition imposes:  0 { ( { 1.5         (29) 

must be kept, in practice, below or equal to 0.2 (Lattice units) to maintain the 

uid [48]. In fact, Mach number must be too inferior to uni

| = }ef9N ≪ 1  (30) 

is the discrete velocity and c� is the Lattice speed of sound. 

LBM algorithm, a convergence test must take place in order to be sure that the steady state is 

state simulation is considered converged when the maximum error over the 

Mv��Q#:^rxQ#:^y
z}��6,��,\n#�"}(�6,��,\)zz}(�6,��,\)z { �     (31) 

The used value of maximum error is � = 10"j.It is well-known that it is recommended to use this type of 

convergence (relative) among other types such as absolute convergence except for the case when the 

denominator is near zero. In this work, we notice that all the simulations carried are with 

For simulations carried using the real SOFC microstructure, zu(�� , �x , �)zis close to zero. T

zu��� , �x , � + 1� − u(�� , �x , �)z { �                     (32) 

The used value of maximum error is � = 10"##. 

 

Flow around a sphere: Laminar viscous flow 

As a preliminary step in simulating diffusion through more complex geometries, the 2D LBM model is first used 

species through a cylindrical tube parallel to the x-axis containing a sphere 

The sphere is 10 (lu) diameter, placed in the center of the domain. Zou and He boundary conditions 

are applied at the inlet (velocity) and outlet (density). Periodic boundaries are applied at the top and bottom 

walls. Simulation parameters illustrated in Table 3. 

Table 3: Simulation parameters in lattice units. 

 
around a sphere 

In Figure 6 (a), the velocity field is presented to illustrate that LBM can easily handle the obstacles in a porous 

back effect for the particles at the obstacle wall. A high velocity appears at the top and 

re related to the confinement of the fluid between the obstacle and the wall 

boundary. This is in good alignment with the fact that for the same flow rate, the decrease of passage surface 

induces higher velocities. The lowest velocities are located around the sphere especially in the front region and 

the separation region. Figure 6 (b) present the streamlines around the sphere and showed that the laminar regime 

is proved, due to the smooth distribution of streamlines around the sphere. Flow in the wake regi

there is absence of "eddies" or small packets of fluid particles. 

Reynolds number 

Velocity (u�sb&\,bc)  

Viscosity (*bc) 

Diameter (�) 

Density (>) 

ected mainly by two important parameters which are the relaxation time ( and 

31] to study its influence 

must be positive, otherwise 

units) to maintain the 

must be too inferior to unity: 

sure that the steady state is 

error over the fluid nodes 

known that it is recommended to use this type of 

convergence (relative) among other types such as absolute convergence except for the case when the 

all the simulations carried are with zU(x�, y�, t)z not really 

. Therefore, the absolute 

As a preliminary step in simulating diffusion through more complex geometries, the 2D LBM model is first used 

axis containing a sphere 

He boundary conditions 

are applied at the inlet (velocity) and outlet (density). Periodic boundaries are applied at the top and bottom 

 

 

 
 

In Figure 6 (a), the velocity field is presented to illustrate that LBM can easily handle the obstacles in a porous 

back effect for the particles at the obstacle wall. A high velocity appears at the top and 

re related to the confinement of the fluid between the obstacle and the wall 

boundary. This is in good alignment with the fact that for the same flow rate, the decrease of passage surface 

the sphere especially in the front region and 

the separation region. Figure 6 (b) present the streamlines around the sphere and showed that the laminar regime 

is proved, due to the smooth distribution of streamlines around the sphere. Flow in the wake region is not 
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Figure 6: (a) Velocity profile 

 

Figure 7 shows the density distribution among the domain. 

enters with its maximum density, until

driving the flow because the pressure is 

theory. Recorded density small variation 

This confirms the incompressibility of the fluid, and proves consequently the mass conservation.

 
 

Figure 7: Hydrogen density profile in case of a flow 

 

3.1.2. 2D Flow in an artificial porous media

Once the 2D flow LBM model is validated, it is used to study mass transport in the SOFC anode model. Both the 

spherical packing geometry and the real anode geometry are considered for analysis. The artificially build up 

geometry contains a randomly placed spherical 

particles, between which the fuel gas will cir

200 nodes length. The size of spherical 

condition at the inlet, periodic boundaries on top and bottom of the domain, and a density Di

condition at the outlet. The domain is computed as a binary mask, the obstacles are presented by "1" and the 

remaining part by "0". Simulation parameters are summarized in Table 4.

 

     
 

 

 
 

 

 

 

 

 

 

 

 

 

 

      Figure 8: Domain description of the

    artificially anode geometry. 

 

Figure 9 shows that the velocities obtained at steady state are very low. Note that the

lattice units. The region of close obstacles is a region where

drop phenomena occurring at obstacle

fluid on the surface of the obstacles.

 

 

 

 

 

Figure 9: Velocity distribution in the porous media for (a) 155 iterations

 

3.1.3. 2D Flow in the real anode microstructure

In order to simulate the velocity pro

anode portion was used. SEM (Scanning Electron Microscopy) 

(b) 

elocity profile and (b) streamlines around the sphere at Re= 0.5

Figure 7 shows the density distribution among the domain. Density decreases slightly from inlet, where the 

until the outlet. This small drop could be explained by the pressure gradient 

pressure is known to be related to density (� = >@F/ = #+ >) accordin

mall variation results on an average density equal to unity similar to the inlet density

This confirms the incompressibility of the fluid, and proves consequently the mass conservation.

 
7: Hydrogen density profile in case of a flow around a sphere after 10316 iterations.

w in an artificial porous media 

Once the 2D flow LBM model is validated, it is used to study mass transport in the SOFC anode model. Both the 

ing geometry and the real anode geometry are considered for analysis. The artificially build up 

a randomly placed spherical obstacles representing approximately the anode material 

which the fuel gas will circulate. The domain is shown in Figure 8. It is 50 nodes height and 

spherical obstacles is variable. We imposed as boundary conditions a velocity 

condition at the inlet, periodic boundaries on top and bottom of the domain, and a density Di

The domain is computed as a binary mask, the obstacles are presented by "1" and the 

remaining part by "0". Simulation parameters are summarized in Table 4. 

   Table 4: Simulation parameters in lattice units.

of the 

 

shows that the velocities obtained at steady state are very low. Note that the velocities presented are in 

lattice units. The region of close obstacles is a region where velocities are almost zero due to the pressure head 

cle surfaces resulting of the viscous frictional forces applied by the flowing 

obstacles. 

: Velocity distribution in the porous media for (a) 155 iterations; (b) 5000 iterations

microstructure 

In order to simulate the velocity profile through a real anode microstructure of the SOFC, SEM

anning Electron Microscopy) is a technique used to track the morphology and 

Reynolds number 

Velocity (u�sb&\,bc)  

Viscosity (*bc) 

 

Re= 0.5. 

from inlet, where the fluid 

explained by the pressure gradient 

) according to the LBM 

similar to the inlet density. 

This confirms the incompressibility of the fluid, and proves consequently the mass conservation. 

a sphere after 10316 iterations. 

Once the 2D flow LBM model is validated, it is used to study mass transport in the SOFC anode model. Both the 

ing geometry and the real anode geometry are considered for analysis. The artificially build up 

obstacles representing approximately the anode material 

igure 8. It is 50 nodes height and 

obstacles is variable. We imposed as boundary conditions a velocity 

condition at the inlet, periodic boundaries on top and bottom of the domain, and a density Dirichlet boundary 

The domain is computed as a binary mask, the obstacles are presented by "1" and the 

imulation parameters in lattice units. 

velocities presented are in 

velocities are almost zero due to the pressure head 

resulting of the viscous frictional forces applied by the flowing 

5000 iterations. 

SOFC, SEM-scanned SOFC 

used to track the morphology and 
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chemical composition of microstructures by means of

the SEM-scanned portion of an anode SOFC cross

simulation of the real structure, dimensions have been measured 

scale. Dimensions are 20.5µm length and 14

through a developed MATLAB code.

then applying an operation of "opening"

approximate shape of the anode porous media structure as illustrated in 

image was estimated by Matlab script 

 

Figure 10: Anode image treatment steps. Final anode real image is on the right.

The LBM parameters used in this case are accomplished in two steps as

system to dimensionless system, then from

the physical and Lattice parameters used for the simulation of the 2D hydrogen flux through the real anode 

geometry of the SOFC. 

Table 3: 2D LBM model parameters of hydrogen diffusion in 

 

 

 

 

 

Simulation results presenting the velocity pro

illustrated in Figure 11.a slow diffusion of 

the low inlet flow rate of the fuel. The f

This can be explained by the confinement

media is outlined. Simulation also shows that there are some 

In fact, those anodic zones seem to be characterized majorly by

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 11: Velocity simulation at intermediate iteration 

 

Reynolds number : Re 

Velocity: u�sb&\  (m/s) 

Viscosity: � (m²/s) 

Length : k�  (m)  

height:  k� (m) 

(a) 

microstructures by means of focused beam of high-energy electrons. Figure 10 

an anode SOFC cross-section realized by our research group.

real structure, dimensions have been measured using the Image J software

m length and 14.61µm height. Furthermore, an image processing has been applied 

through a developed MATLAB code. This image processing consists basically of converting the image to binary 

an operation of "opening" which is a combination of erosion and expansion

approximate shape of the anode porous media structure as illustrated in Figure 10 the porosity of the treated 

image was estimated by Matlab script to 66%. 

: Anode image treatment steps. Final anode real image is on the right.
 

 
 

 

 

The LBM parameters used in this case are accomplished in two steps as previously mentioned

system to dimensionless system, then from dimensionless system to Lattice system. Table 5 shows

attice parameters used for the simulation of the 2D hydrogen flux through the real anode 

 

2D LBM model parameters of hydrogen diffusion in real anode geometry.

results presenting the velocity profile through the real anode microstructure at 

usion of hydrogen fuel through the porous anode domain

The fuel velocity slightly increases compared to the initial velocity (

finement of the fuel inside the porous structure. Tortuosity of the anode porous

media is outlined. Simulation also shows that there are some parts of the domain (upper side) that are not fueled. 

In fact, those anodic zones seem to be characterized majorly by blocked pores rather than 

 

Figure 11: Velocity simulation at intermediate iteration numbers, 61, 400, 20000
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energy electrons. Figure 10 shows 

section realized by our research group. To enable the 

software at the given image 

Furthermore, an image processing has been applied 

This image processing consists basically of converting the image to binary 

and expansion steps, to finally get an 

the porosity of the treated 

 

: Anode image treatment steps. Final anode real image is on the right. 

mentioned; from physical 

Table 5 shows a summary of 

attice parameters used for the simulation of the 2D hydrogen flux through the real anode 

real anode geometry. 

 different time steps are 

domain was signaled due to 

slightly increases compared to the initial velocity (10"h�?). 

of the fuel inside the porous structure. Tortuosity of the anode porous 

side) that are not fueled. 

 open ones. 

numbers, 61, 400, 20000. 

Lattice system (lb) 10"g h 

0.032 

 

100 
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In order to evaluate the influence of porosity on the velocity profile, porosity of the real anode was modified 

manually using image processing. The 

measured is about 75%. 

 

 

 

 

 

 

Figure 12: treated anode images (a): porosity= 66%, (b) porosity= 75%.

Figure 13 shows the velocity profile 

comparison with Figures 11, it is clear

aligned with the increase of velocity when

distribution seems to be more distributed

beneficial for the decline of the concentration polarization but it 

contact between the anode particles 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Velocity simulation at intermediate iteration numbers, 61, 400, 20000

3.2. Coupled Heat and Mass transport LBM model results

 

3.2.1. Flow around a sphere: Laminar viscous 

As a preliminary step in simulating 

a flow around a hot sphere and hot walls was modeled. The c

example of a flow in a channel with hot

equal to 1 will be added as illustrated in

specified. 

Figure 14: Computation domain description with de

a 

(a) 

In order to evaluate the influence of porosity on the velocity profile, porosity of the real anode was modified 

manually using image processing. The new image obtained is given in Figure 12(b). The new 

 

 

 

treated anode images (a): porosity= 66%, (b) porosity= 75%.

e through the second real porous anode media illustrated in Fi

, it is clear that the higher is the anode porosity the lower is the H

the increase of velocity when the fuel is bounded in narrow paths. Nevertheless

distributed when the anode porosity increases. The increase in porosity 

for the decline of the concentration polarization but it may be a source of a high activation loss

 needed for the reaction sites is quite limited in this case.

: Velocity simulation at intermediate iteration numbers, 61, 400, 20000

 

Coupled Heat and Mass transport LBM model results 

3.2.1. Flow around a sphere: Laminar viscous flow 

As a preliminary step in simulating temperature profile through the real anode geometry of solid oxide fuel cell

a flow around a hot sphere and hot walls was modeled. The computation domain is the same as the previous 

ith hot walls and cold entry, in which a hot sphere with normalized temperature 

be added as illustrated in Figure 14. Boundary conditions for velocity and temperature

Computation domain description with detailed temperature and velocity boundary conditions.

b 

(b) 

In order to evaluate the influence of porosity on the velocity profile, porosity of the real anode was modified 

. The new anode porosity 

treated anode images (a): porosity= 66%, (b) porosity= 75%. 

illustrated in Figure 12(b). In 

the lower is the H2velocity. This is 

Nevertheless, the H2 fuel 

. The increase in porosity appears 

high activation loss as the 

case.  

: Velocity simulation at intermediate iteration numbers, 61, 400, 20000. 

the real anode geometry of solid oxide fuel cell, 

omputation domain is the same as the previous 

walls and cold entry, in which a hot sphere with normalized temperature 

Boundary conditions for velocity and temperature fields are 

 

tailed temperature and velocity boundary conditions. 

(c) 



Figure 15 illustrates the velocity and the temperature profiles through the rectangular channel. Results show that 

Hydrogen which is introduced in cold state was heated progressively by convection with heated sphere, top and 

bottom walls. At about x=100 (position of the sphere), the temperature is almost uniform at values between 0.9 

and0.95.The increase of temperature on the surface of the sphere can be explained by the heating effect created 

by friction forces occurring due the contact fluid-solid. These forces convert the kinetic energy (work) into 

thermal energy (heat). 

 

 

Figure 15: Velocity and temperature profiles in case of a flow around a hot sphere and hot walls. 

3.2.2. Flow around a randomly placed hot spheres 

In a continuous approach to get closer the SOFC anode porous structure, another example was simulated. A flow 

past an artificially generated porous media was modeled. A velocity boundary condition is imposed at the inlet. 

At the outlet, open boundary is applied. Top and bottom boundaries are set as periodic for velocity field. The 

thermal boundary conditions of top and bottom walls are adiabatic. Flow at the inlet is cold and set to 0 

normalized temperatures by means of a Dirichlet boundary condition. The outlet is an open boundary. Spheres or 

obstacles are at high temperature (normalized temperature=1).  

Simulation results are illustrated in Figure 16. It is noticed that the more the fluid progresses inside the channel 

the more it is heated. In fact, the contact with the first spheres at x=50 and x=75 rises the temperature from 0 to 

0.7. At the contact of fluid with the later obstacles, temperature 1 is reached. The hydrogen particles’ 

surrounding the hot obstacles is blocked (velocity nill) and exhibits a temperature higher slightly than the 

normalized obstacle temperature. 

 

 

Figure 16: Velocity and temperature profiles in case of an artificially porous media. 

 

3.2.3. Flow in the real anode porous geometry 

Simulation of velocity and temperature profiles was applied to the real anode structure presented in Figure 12(a). 

Simulation parameters are those given in Table 3. The porous domain of the fuel cell is initially heated to 600°C. 

In fact, before feeding the device with fuel, it is necessary that the fuel cell reaches a high temperature since it is 

an essential operating condition for the activation of anodic electrochemical reactions. The porous structure is at 

a normalized temperature set to unity, the inlet fuel is cold and set to 0. Top and bottom boundaries are adiabatic. 



Open boundary condition is applied at the outlet of the domain. Simulation results illustrating H2 velocity profile 

and temperature distribution are shown in Figure 17. The temperature distribution among the domain is almost 

uniform except for the inlet where the cold fluid hardly diffuses, as illustrated in velocity profile too. According 

to the literature, a series of exothermic reactions could take place in the anode which may results in a 

temperature distribution slightly different especially near electrochemically active areas. 

 

 
 

Figure 17: Hydrogen velocity and temperature profiles inside the real anode geometry. 

 

Conclusion 

 

A 2D LBM model was developed to model mass transfer through porous materials. Based on the SEM 

micrographs, it is now possible to reconstruct the pore structure of a SOFC anode with a clear identification of 

solid and pore phases. The treated image data were used as input to the LBM model to simulate temperature 

profile and mass transport of hydrogen fuel through the pores along the anode thickness. 

Mass transport results, generated using the real anode porous geometry, agree with results from simpler 

geometries generated using a unique sphere and a randomly spherical packing model. The 2D coupled heat and 

mass transport LBM model developed in this work may be part of a series transport models that can eventually 

be used for geometry optimization of the SOFC electrodes.  According to the obtained results, it appears that in 

order to accurately predict the mass and thermal transport phenomena taking place inside the porous anode 

media, it is recommended to take into account a detailed description of electrochemical aspects existing inside 

the anode microstructure. Therefore, a coupled electrochemical model to the already build mass and thermal 

lattice Boltzmann method, will be one of the major perspectives of this work. 

 

Nomenclature 
 

List of symbols  

 �       Particle diameter, m
 k�        Length of the domain, m k�      Height of the domain, m JK       Boltzmann constant, m

2
.kg.s

-2
.K

-1
 M      Weight, Kg 

Re    Reynolds number, - �        Time, s �, �   Position, m
 �      Particle distribution function, mass transport  �      Particle distribution function, heat transport 

 >      Density, Kg.m
-3

 L      Temperature, K ?�    Velocity in x-direction, m.s
-1

 ?�    Velocity in y-direction, m.s
-1

 ?      Velocity vector, m.s
-1

 @      Celerity, m.s
-1 

ℓ     Domain length in lattice unit, -
 @F    Celerity of sound, m.s

-1
 

 

Greek symbols 

α    Thermal diffusivity, m
2
.s

-1 *     Kinematic viscosity, m
2
.s

-1 

τ     Relaxation time, - 2    Weight factor, - 

 

Indices �      Dimensionless system ��     Lattice unit system 
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