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Résumé:This work is about two phase flow in a gas diffusiayer of a polymer electrolyte membrane fuel cell
using a lattice Boltzmann Shan-Chen algorithm whgchn efficient numerical scheme for the time aejeat
simulation of multiphase fluid flow problems. Thisethod is especially useful for modelling complesht
boundary conditions and multiphase interfaces &gl hased on microscopic models and macroscopietiki
equation. A numerical code is used to simulate dimoensional flow through an idealized and a reallG®
characterize density distributions in the layereTgorous medium is firstly constructed by randomscsliof
different diameters, next a real GDL will be usedhe simulation after being binarized.
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1. Introduction

A fuel cell is a device that generates electribiyya chemical reaction. There are different typefuel cells. A
fuel cell proton exchange membrane (PEM) is comppasiean anode, a cathode, two bipolar plates, two
catalysts and a membrane. The hydrogen and oxygefiec to the anode and cathode by the flow charaad

the gas-diffusion-layers (GDL), while the water gwoed in the porous membrane is then shunted otlteto
exterior of the fuel cell. The polymer membrane tmios hydrated to ensure high conductivity of prston
Diffusion layers must have sufficient pores to pdevreactant gas access from flow-field channelsatalyst
layers and providing passage for removal of prodiater from catalyst-layer area to flow-field chasnghich
must havea well-defined shape. The bipolar plate contairthreychannels must have an adequate geometry for
improving the performance of a fuel cell. PEM opieig at reduced temperature and pressure levdigh
triggers the development of two-phase flows indlte bipolar plates channels and the gas diffusagerl The
gas diffusion layer commonly referred as GDL cass@ a porous support, electronic and thermal ootud,
which is conventionally composed of a carbon clothpaper (Figure 1). In a PEMFC fuel cell, the akfbn
layers must simultaneously lead the gases of thardis into the active zone and evacuate the pteddche
reaction. For this the GDL must be permeable tgenats and products in all directions. The best ratehich
respects the constraints imposed by the operafidheofuel cells is a material based on carbonréhbghose
diameter is approximately 10 um. The GDL is in thiem of cloth or felt whose thickness is betweef® 2td
400 um. The GDLs have a strong anisotropy: thadibave a privileged orientation. The GDLs haveoptties

of the order of 80%. Gdls are compressed betwesbifiolar plates and the membrane / electrode ddgemd
their effective thickness decreases by 10 to 40%.



Figure 1: Gas Diffusion Layers in FC Stack (Freuskrg Fuel Cell Products R)

It's very important to study the flow behavior imagdiffusion layer of PEFC in order to test thel foell
performance. In this work, two phase flow distribatin GDL is modeled using the lattice Boltzmanathod in
two dimensions. Simulations are carried out byitltempressible LBGK 2D 9-velocity (D2Q9) model. $tly
the GDL is considered as a porous media construngeftked disks after that a two-dimensional slafea real
GDL will be studied.

2. Lattice Boltzmann method

Over the last decade the lattice-Boltzmann (LB) hods (Qian et al (1992), Chen et al (1998), Sutdale
(1991)) have achieved great success as alterrativefficient numerical schemes in the simulatiba wariety
of transport phenomena in porous media, modeling flow in fuel cells, and microfluidics.

Due to its simple calculation procedure, efficieimiplementation, simplicity of boundary condition’s
implementation, easy and robust handling of comgleametries, LBM is considered as the best altmenad
traditional conventional computational fluid dynasiisolvers which basically solve the macroscomogport
equations.

This method is a mesoscopic approach inheritingyndnthe advantages of molecular dynamics and kinet
theories without using complicated kinetic equadion

The starting point of the lattice Boltzmann methisdo solve, on a discrete lattice, the followinglt8mann
equation for the discrete velocity distribution:
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Where g is the speed of a particle at a positignand timet and Q( f; ) is the collision operator controlling

the rate of change in the distribution functioduring the collision, the tern@ .ifi models the change in the

distribution function due to the spread of the igl$ during their movement.
The collision function represents the collision ffid molecules at each node and has the followfimgn
(Bhatnagar et al. (1954)):
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Where fieq (X,t) is the equilibrium distribution function and is the relaxation time which is related to the

viscosity of the fluid ¢ = (27 —1)/6, wherev is the kinematic viscosity)

The equilibrium distribution functions for differemodels were derived by He and Luo (1997). Thetion is
given in the following form for the two-dimensionaB model with nine microscopic velocity vectors20Q9)
(Figure 2):
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Where p andU are the density and the macroscopic velocity ofbae.
W, is the weight factor fof" direction; we also assume that these factorsh@reame for directions having the

same velocity , these variables satisfy the foltugyvielationship:Z:V\/i =1. For D,Q, model the weighting
i

factors are defined by:

49 =0
w={Y9  i=1357 (@)
136 = 2468

C,is the isothermal speed of sound, it is obtainetheyChapman-Enskog expansion.
CS:1/\/§ for D2Q9 lattice (Chen et al, (1992) ; Frisch le{#987) ; He and Luo, (1997) )

The D,Q, model is the most popular scheme in two-dimensipnatlems:
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Figure 2: D,Q, model.

The discretized Lattice Boltzmann equation is disfa

f(R+8ALEHA) - f (D= (FTRD-F(%0) O

There are two basic recurrent steps during sinariatf viscous flow in a typical LB algorithm:
-Collision step: the arriving particles at the geimteract with another and change their veloditgctions, thus,
at time t the particles at node x come into calliswith each other which changes the distributiomcfion from

. - - 1 - -
f.(X,t)to f (X,t) = f (X,t) +=(f(X,t) = f (X1))
T
-Streaming step: particles move during the timg Afe, along lattice bonds to the neighbouring latticeles
and the distribution function fi*(f(,t) spreads along the vec®r more formally:
f (X+8.ALt+At) = f (X,1).

The two macroscopic properties, densifg X and velocity @) of the nodes, are calculated using the following
relations:

p(x,t) = Zgl f (x,1) (6)
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2. Lattice Boltzmann boundary conditions

One of the main advantages of the lattice Boltznmaethod is the easy introduction of boundary coons; the



most popular boundary condition for (LBE) methodhe bounce back scheme, in this rule, particleishware
incident upon a solid boundary are reversed anetl@athe direction from which they came.( D'Hureiet al
(1987)). This method makes the resolution of comptdid boundaries straightforward. (Figure 3)

South

Figure 3: Rebound conditions at a wall

As the lattice Boltzmann method is a kinetic methothcroscopic boundary conditions do not have tlirec
equivalents. They have to be replaced by appr@pridtroscopic rules which induce the desired maoois
behavior. For the bounce back rule on wall nodes:

f, (Xt)=f (X,t) /xOwall ®)
Withe. = —&,.

3. Shan and Chen-type lattice Boltzmann

Shan and Chen proposed a multiple phases LBM mmodéitroducing an interparticle potential betweéndf
components and based on the BGK collision modethis model, one distribution function is introddctr
each of the fluid components.

In the Shan-Chen model, a force, between the tuidgflis introduced that effectively perturbs theiflorium
velocity for each fluid.

In D2Q9 model, this force is given by:

F(x1) =-Gy(x )Y wg(x+eltte (9)
i
Where G is the interaction strengW¥, is weightcoefficient, and¢/ is the interaction potential:

Y(p) =y, (-e) @0
{,and p, are arbitrary constants.
Adhesive forces between the fluid and solid phasesntroduced into the model by Martys and CIi£896) :

Fus(x 1) = =G (x, 1) ws(x+elt e (L]

Here s=0, 1 for nodes in the liquid and on solidlsyaespectively.
G, represents the particle interaction strength betvitegd and solid walls, and varying the parametéows

simulation of the complete range of contact angles
With these definitions, in simulation, the hesive force and the attractive force are addetig¢ovelocities
that compute the equilibrium distribution ftioa with the following formula:

U =u +§(F +Fy) (12

4. Results

We consider a simple network as illustrated in Fégd in which the GDL are made of randomly packisttsd
with porosity p = 0.5023. This can be consideredadayer of unit thickness of a three-dimensionalops

media. The centers and radii of the disks are geéeeéraccording to a normal law with a non-intelisect
condition between the circles.

We implemented the lattice Boltzmann model for tdeal fluids to simulate the external force drivievo

phase flow through the simplified GDL. The two stéptream and collide” algorithm for a (D2Q9) lediis



used to simulate lattice Boltzmann equation on #QMO0 site lattices. Bounce back boundary condstiare
imposed on the solid walls.

Figure 4: GDL as a porous medium with circulardsli

Generally, diphasic flow in a porous medium invaltew infiltration rates and capillary forces dwefluid /
fluid and fluid / solid interactions, which is refited by low Reynolds and capillary numbers. I3 fart of
simulation, the dimensionless numbers are set kmnviog: Ca= 0.091Re=0.45 andBo= 0.087. Normalized
density plots at various time steps were generdigdire 5 show the evolution of the phase distidsupatterns.
According to the phase diagram presented by Lenodned al the values of these non-dimensional nusnber
indicate that the diphasic flow in the porous madaés in the so called capillary fingering, whicbnsists of a
liquid front characterized by the development of @n more fingers.

The next step is the two dimensional simulatiofl@fv into a real GDL, the idea is to binarize alrmaage of
gas diffusion layer to output the first binarycsliof this porous media.(Figure 5).

Figure 7 show the density distribution of the fldwough the gas diffusion layer we can confirm that flow is
also in the so called capillary fingering regime.

It is also observed that flow blockages can occhickv caused by the constrictions formed by theréikia
certain zones, we then speak of trapped vapormsgkigure 8 show the saturation versus time irGtbé.

After a time greater than 6x1as, the fluid distribution in the fibrous mediaries very slowly and the
penetration is extremely slow, the calculation Heesen stopped because the saturation has converged
substantially to a constant value.
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Figure 5:Partial invasion of tr GDL. The liquid phase is red.



Figure.6 Original image and image after being hiaeat.

Figure.7 Original image and image after being biaeat.
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Figure 8: Saturation versus time
Conclusion

We have developed an LB code with an external flocéwo-phase flow in two-dimensional GDL, in thisde
the two phase fluid is modeled by Shan-Chen schdihe.present scheme has all the advantages, ingludi
good numerical stability and the ability to handialtiphase flow in complex geometry problems.

The density distribution of the flow through a GDhodel constructed by random disks packing and a two
dimensional slice of a real GDL was simulated.

The results have shown that the flow is in the albed capillary fingering regime according to Lemand
diagram.

Finally, the capability of the lattice Boltzmann tined to analyse multiphase problem in fibrous niakevas
shown.The effect of the porosity of the medium on thevlmust be included in future work.

Also other geometries must be tested. However, atig@gr to three-dimensional simulation seems inbléta
because of its advantages.

Nomenclature

Symbols
U : Macroscopic velocity W : Weighting factor
f.: Distribution function Greek symbols
o o o _ 0 : Density
f,*: Equilibrium distribution function T - Relaxation time
C: Lattice velocity Q : Collision operator
C,: Speed of sound V : Kinematic viscosity
p: Pressure g? : Molecular velocity
Ca: Capillary number Indices
Ma : Mach number I : Lattice streaming vector direction

R.: Reynolds number

At : Time step

T : Temperature

R : Specific gas constant
U, : Top lid velocity

lu: Lattice unit

AX : Lattice spacing
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