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ABSTRACT : 
 Accurate solutions of the equations governing the natural convection of air in a cubic cavity, thermally 
driven on two opposite vertical faces are given for Rayleigh number values up to 107. These solutions are 
obtained with a pseudo-spectral Chebyshev algorithm based on the projection-diffusion method [1,2] with a 
spatial resolution supplied by a 81x81 polynomial expansion. The solutions are believed to be accurate to better 
than [0,002, 0,02]% in relative spatial error for the corresponding Rayleigh number (Ra) range [103, 107]. They 
clearly indicate a non monotonous evolution of the flow structure as Ra increases. 
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1. INTRODUCTION 
 A good knowledge of the natural convection flows in differentially heated enclosures is a valuable 
starting point for testing and validating computer codes used for a wide varieties of practical problems, such as 
cooling of radioactive waste containers, ventilation of rooms, solar energy collectors and crystal growth in 
liquids. In the design of such devices, De Vahl Davis and Jones [3,4] have published in 1983 a bench-mark 
numerical solution of the buoyancy-driven flow in a square cavity with differentially heated vertical sides, the 
other ones being adiabatic, for a Rayleigh number value lying in the range [103-106], and a Prandtl number fixed 
at 0.71. By resorting to a systematic grid refinement practise and by concurent use of the Richardson 
extrapolation to obtain grid-independent data, these solutions were claimed to be within an accuracy of 1%. In 
1991, P. Le Quéré [5] proposed accurate numerical solutions, obtained with a pseudo-spectral Chebyshev 
algorithm, for Ra number values up to 108, that is very close to the transition to unsteadiness which occurs at 
Ra= 1.82 108. [6]. 
 In the last two decades, owing to improvements in algorithms and computing ressources, 
three_dimensional flow calculations have been performed for the differentially heated (on two opposite vertical 
faces) cavity [2,7-13]. All together, these papers refer to several different 3D configurations. For the one which 
is considered here (the fluid is confined in the three space directions and the non active walls are adiabatic), to th 
author’s knowledge, only the references [2, 9, 11-13] supply characteristic values of the stationary velocity fields 
and/or the Nusselt numbers, for values of the Ra number lying in the range [103-107]. It has been shown, 
recently, by [2] that the natural convection flow of air, in this configuration, becomes unsteady for a value of the 
Ra number situated just beyond this range, with an hysteretic behavior extending from 3.2 107 to 3.5 107. 
 The purpose of this communication is to complete the two- and the three-dimensional flow calculations 
database by providing five accurate solutions corresponding to Ra=103, 104, 105, 106 and 107 respectively. In 
particular, these data clearly indicate a non monotonous evolution of the flow structure as Ra increases. 
 
 
 
 



2. THE MATHEMATICAL MODEL AND THE NUMERICAL METHOD 
 The usual dimensionless Boussinesq equations are : 
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Where : 

• unite vector  êz  points the upward vertical direction, êx and êz being the unit vectors in the horizontal 
plane, 

• the lengths, the velocity v = u êx + v êy + w êz and the temperature T are scaled by H, the size of cube, 
the thermal diffusion velocity κ/H and the imposed temperature difference ∆T, respectively, the other 
scales being derived from these, 

• Ra and Pr (fixed at 0.71) are the Rayleigh and Prandtl numbers. 
 
No-slip boundary conditions are imposed on all the faces of the cube. The thermal conditions applied on the 
active faces are T(x = 1/2,y,z) = –1/2 , T(x = -1/2,y,z) = ½, the other faces being adiabatic (∂T/∂n = 0, at (x, 
y=±1/2,z) and (x,y, z = ±1/2) where ∂/∂n stands for the appropriate norma l derivative. The 2D square 
configuration corresponds to the particualr case of flows which are invariant by translation along the êy direction. 
They are often assumed to approximate the cross-section in the mid-plane y = 0 of the 3D flows which are 
invariant by reflection about this plane. 
 A Chebyshev Gauss-Lobatto method has been used to evaluate the fields spatial derivatives. The 
velocity and pressure have been uncoupled by a « projection-diffusion » approach, recently proposed in [1,2]. It 
is an unconditionaly stable direct solver of the unsteady Stokes problem discretized in time with a second order 
scheme. The pressure is first evaluated, form a Darcy system, to cancel the numerical value of the divergence of 
an intermediate field, which becomes in its turn the source of an advection-diffusion equation to be solved for 
the velocity field. The obtained divergence improves itself exponentially as the nodes numner increases, as 
expected from the numerical divergence of any non singular velocity field. These equations have been time 
integrated by a classical second order finite differences scheme (Crank-Nicolson for the diffusion terms and 
Adams -Bashforth for any explicit evaluation). 
 
3. THE NUMERICAL RESULTS 
 Convergence to steadiness is declared when the criterion  

|Φn - Φn-1 | / |Φn|  δt  = 10-1 
 
is satisfied for all Φn standing for the maximum value, found on the nodes at time n δt, of one of the physical 
fields. 3D results at Ra=106, with δt = 4 10-6, have been obtained with more severe criteria than the quoted one, 
by one to three decades. They are quite equivalent, all departing by 0.03% form the results obtained with the 
criterion 10-1. 
 2D and 3D calculations have been performed, for each chosen Ra number value, applying the following 
procedure. For a given value of the Ra number, a steady solution has been first obtained on the coarser grid, 
starting either from from rest or from a flow corresponding to a smaller Ra number value. This solution was then 
projected onto a finer Gauss-Lobatto grid by a Lagrange interpolant. Time integration was then restarted using 
this extrapolated flow as initial condition and carried out until the new steady-state achievment. The process was 
repeated until the solution be obtained on the finest grid. 
 An excellent agreement has been observed between our 2D results and the benchmark data given by [4] 
and [5]. 
 3D calculations have been performed at five Rayleigh number values (103, 104, 105, 106 and 107). For 
each one of these values, a 3D flow has been obtained with four different meshings : 513, 613, 713 and 813. The 
assessment of the accuracy of our results has been made at Ra=106 and 107 with additional flows obtained with 
seven other grid refinements. As the number of nodes increases, each quantity converges towards a given value 
(zero, in particular, for the divergence). The exponential decrease of the relative divergence, as a function of the 



nodes number, confirms the spectral improvement of the data. In order to evaluate the accuracy of our data we 
have calculated, for each maximum of the velocity component, a relative error with the quantity 

ER[ΦΝ1] = |Φmax ,N1- Φmax,N2 | / |Φmax,N1|    ; N1<N2   
Where Φmax ,N1 stands for the absolute maximum of one the velocity components, calculated with the N3 grid. 
The evolution of these quantities as a function of the nodes number suggests a spectral decreasing of the relative 
error on the velocity field. Thus, with the finest grid used here (813 nodes) the relative accuracy is within 0.02%. 
Repeating this procedure at Ra=103 and 104 with the four meshings indicated above, the corresponding relative 
error is evaluated at 0.002%. Thus, the space convergence can be considered as reached to supply accurate 
solutions. 
 
4. BENCH-MARK SOLUTIONS 
 A comparison of our data with those already published [7-13] is realized and a first set of « bench-mark 
three-dimensional solutions » is proposed (Table 1). The quoted data are purposedly restricted to their significant 
digits. As already indicated in [2], all these flows are invariant by reflexion about the mid-plane (y=0). The 
measured relative symmetry rate is better than 10-9. 
 The goal of this paper is not to characterize the 3D structure of the flows. Nonetheles, a noticeable 
feature emerges from the reading of Table1. Indeed, the mis -plane contains the maximum of the u velocity 
component, except for the Ra=105 and 106 cases, which suggests a non monotonous evolution of the flow 
structure when the Ra number value increases. This is confirmed by looking at thefollowing three relative heat 
transfer rates,    100x(Nu2D,W – Nu3D,W )/Nu2D,W  , 100x(Nu2D,W  – Nump)/Nu2D,W                                                                    
, 100x(Nu3D,W  – Nump)/Nu3D,W    whose Ra dependencies are shown on Figure 1. Nu2D,W  is the global 2D Nusselt 
number at the wall , Nu3D is the global 3D Nusselt number at the wall and Nump is the mid-plane Nusselt number 
(y=0), whrer y is the coordinate along the horizontal « depth » direction êy. 
 As well known since the thermally driven cavity is studied, Nu3D,W is less than Nu2D,W, at least until the 
onset of unsteadiness, their relative departure being maximum (9%) at about Ra=104. With respect to the Nu2D,W, 
the mid-plane heat transfer increases, goes beyond it, until reaching a maximum (at about Ra=105) and then goes 
back to get close, but slightly larger, to Nu2D,W . So, the 2D approximation of the natural convection flow of air 
overestimates the effective 3D heat transfer and, surprisingly, underestimates the mid-plane effective heat 
transfer rate. When Nu2D,W  gives the worst estimation of Nu3D,W , it is the best for Nump. 
Table 1 : Benchmark solutions. This Table contains the following quantities : (a) the maximum, in the cavity, of 
each velocity component (u,v,w), with its location, (b) the maximum, in the mid_plane (y=0), of the u and w 
components (v cancels there), with their locations, (c) the maximum, in the mid-plane (y=0), of the u 
components at x=0 and of the w component at z=0, and their locations, (d) the Nusselt numbers Nu3D,W and 
Nump, and (e) d3D, dmp which are respectively the maximum in the cubic cavity of the nodal divergence, scaled by 
the larged modulus of the velocity, and the maximum in the cavity mid-plane (y=0) of (?v/?y), reached by the 
largest modulus of the velocity. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Rayleigh number 
 103 104 105 106 107 

umax 3.543 16.719 43.90 126.97 383.78 
X 0.0166 0.0196 -0.1841 -0.3057 -0.3777 
Y 0.54  10-11 0.12  10-10 0.2203 0.2997 0.37 10-10 

Z 0.3169 0.3250 0.3873 0.4365 0.4663 
vmax 0.173 2.156 9.69 25.56 83.40 
X 0.14  10-10 0.3823 0.4175 0.4518 -0.3316 
Y 0.2521 0.2826 0.3390 0.3983 0.4083 
Z 0.43  10-10 0.3447 0.3801 0.4168 0.3953 

wmax 3.544 18.983 71.06 236.72 768.06 
X 0.3223 0.3834 0.4304 0.4604 0.4775 
Y 0.38  10-10 0.2308 0.3736 0.4299 0.4601 
Z 0.0032 0.0206 0.0060 0.0265 0.0323 

Ump,max 3.543 16.719 43.06 123.47 383.76 
X 0.0166 0.0196 -0.1865 -0.3133 -0.3777 
Z 0.3169 0.3250 0.3848 0.4366 0.4662 

Wmp,max 3.544 18.682 65.43 218.25 698.44 
X 0.3233 0.3870 0.4368 0.4638 0.4794 
Z 0.0032 0.0219 0.0100 0.0353 0.0354 

Ump,max(0,0,z) 3.538 16.721 37.56 68.21 154.56 
Z 0.3151 0.3244 0.3535 0.3536 0.3716 

Wmp, max (x,0,0) 3.541 18.616 65.21 217.57 686.93 
X -0.3147 -0.3802 -0.4330 -0.4669 -0.4755 

Nump 1.087 2.250 4.612 8.877 16.547 
Nu3D,W  1.070 2.054 4.337 8.640 13.342 

d3D 0.103  10-4 0.280  10-3 0.112 10-2 0.363 10-2 0.032 
dmp 0.286 0.541 0.421 0.130 0.206 

 
 

 
 
                                                              Fig. 1. The relative heat transfer rates as  
                                                              functions of the Rayleigh number 
 
 
 With respect, now, to Nump, the 3D heat transfer is always weaker. The minimum it presents (by almost 
10%, at about Ra=104) indicates a strong y-dependency of Nu(y). The last data, at Ra=3.3 107, come from the 
ultimate steady flow obtained before the onset of the unsteadiness reported in [2]. It has been added to the 
Bench-mark data in Figure 1 in order to clarify the heat transfer rate evolution at the boundary of the steady 
flows domain. Unsteadiness occurs before the 2D and 3D heat transfer rates become too close. The 3D structure 
of these flows deserves to be studied in detail. 
 
 
 
 
 
 



5. CONCLUSION 
 Accurate solutions to the cubic differentially heated cavity problem have been presented, for values of 
Ra number in the range [103, 107], that is almost up to the end of the steady laminar regime. From mesh 
refinements and extrapolations, the spatial resolution of the data is believed to be better than 0.02% in relative 
spatial error at the highest Rayleigh number. A non monotonous dependency on the Rayleigh number of the flow 
structure emerges clearly from the quoted bench-mark data. 
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