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ABSTRACT 
 
This work concerns the thermal exchange study between a  heated solid and a fluid flow which is evolving 
periodically in a cylindrical cavity. The influence of the two periodical combined motions; rotation of the solid 
and axial flow, on the  thermal transfer mechanism is studied. The numerical resolution has been achieved with 
the finite elements method with the help of the software FIDAP. The founded results show the influence of the 
amplitude variation of the debit mechanism, as well as the one of the angular velocity of the solid, on the thermal 
transfer mechanism. The existence a difference of phase  between motions of the solid and the flow has been 
studied for the case ϕ = -π/2. The boundary thermal conditions that are considered are relative to a constant wall 
temperature. The founded results are in good agreement with other numerical and experimental works.    
 
 
NOMENCLATURE 
A Reference length (m) 
Cp Calorific capacity (J/Kg °K)) 
D Orifice diameter      (m) 
k Thermal conductivity (w/m °K) 
K Ratio  of thermals conductivities                                                        
L Cavity Length  (m) 
n Normal at boundary  
P Dimensioneless pression perturbation  
Pe Peclet  Number RePr  
Pr Prandlt  Number ,µCpf/kf  
Re Reynolds  Number ,ρ fwea/µ  
r Dimensioneless radial coordinate  
R Cavity Ray  
t Dimensioneless time (m) 
Ta Ambient temperature (°K) 
u, v, w Dimensioneless component of vector velocity  
U Dimensioneless  vector velocity  
z Dimensioneless axial coordinate  
Symbols 
α  Solid thermal diffusivity ks/ρsCps  

µ Dynamic viscous flow  
ρ Volumic mass ( kg / m3 ) 
θ  Half angle   cone (rd) 
ε Relative perturbation of magnitude  
ω Pulsation  
τ Dimensionneless time Period  
φ Angle of phase (rd) 
Exponents and indices 
e Relative to the entry of the cavity  
f Relative to fluid  
i Relative to z  
j Relative to r  
l Relative to the outlet of the cavity  
n Relative to t   
p Relative to solid side  
s Relative to Solid  

 
 



1. INTRODUCTION 
 
The study of harmonic perturbation on the thermal transfer was the subject of several studies [1],[2],[3] and 
continuous to attract the attention of researchers, as testify some recent works [4].  Some works consider only the 
transverse conduction. The axial conduction is disregarded, as to the only mean velocity is considered. Other 
authors take into consideration the fluid-wall interaction by through the thermal condition at the solid-fluid 
interface. The exchange coefficients are function of  both, the axial and transverse conduction. B. 
BOUROUGAT and B. FOURCHER [5] studied the behavior of different storage geometry in period regime. The 
results show that the performances of the storage are independent of its geometry and of the fluid coolant. A 
periodic thermal regime of the coupled conduction – convection, between a fluid in flow laminar and a wall has 
been made by M.T.ACKER and B.FOURCHER [6].  In this work, the equation of energy in the two regions are 
solved simultaneously, the solution is confronted that of a constant and uniform exchange coefficient. A 
theoretical study made by C. J. APELT and M. A. LEDWICH [7] concerns the heat transfer of a flow in 
transient regime around a heated sphere for Reynolds numbers of 1 to 40. Three cases of transient regime are 
studied, a pulsated evolution to 50 % of the amplitude velocity of permanent regime, a sinusoidal variation with 
an amplitude of a mean velocity. Results also included the wall transient transfer to a variable temperature of a 
cylinder. In the case of a sinusoidal variation of the velocity, the Reynolds number varies around the middle 
value corresponding at Re = 10 in the interval of 9 to 11,the period  has been chosen equal is about the thermal 
characteristic time. The temperature is maintained constant everywhere. Results show that the quasi stationary 
answer, of the different dynamic and thermal coefficients, although periodic, are not sinusoidal. The heat transfer 
coefficient has an amplitude lower to the one that corresponds to the quasi stationary regime; we a 41°for the 
difference of phase between the heat transfer and the flow rate. The experimental results concerning the transfer 
phenomena between the wall of circular cylindrical pipe of large diameter and a turbulent flow of pulsed air are 
presented in a study by P. ANDRE and R.CREFF [2]. Results show that the Nusselt number in the pulsed flow 
decreases when the frequency increases, giving to the same exchange regime as that of the mean stationary flow 
case.  Also the results show some specific frequency to enrich the heat transfer in the pulsed flow. Among the 
recent works one mentions those of Ashok Gopinath and al [9].   concerning an experimental study on the 
convective heat transfer behavior from a cylinder in an intense acoustic field in oscillatory flows [4], and that of 
FARIAS NETO and al [10] relative to the numerical simulation of  the global mass transfer in a potential flow. 
The study of M. LACHI [11] relative to the insteady forced convection on a plate submitted to a periodical flux 
perturbation.  He studied the influence of a harmonic type perturbation on the heat transfer between the heated 
solid and the fluid. In our work the transient regime was studied for the Reynolds number equal to 50. We 
determine the frequency corresponding to this case. The periodicity of the flow is assured by a periodic entry 
velocity  or a periodic entry velocity superimposed to a rotation of the solid. 
      
 
2. FORMULATION OF THE PROBLEM 
 
A heated cylinder - conical obstacle is inside a cylindrical conduct filled of fluid to the ambient temperature 
(Fig.1). The regime of the flow is assured by the injection of a fluid of a same nature that the fluid into the 
conduct, from the entry of the cylinder, in a periodical variations. The thermal exchange between the solid and 
the fluid is studied in presence and in absence of the rotation velocity of the solid and with a temperature of wall 
maintained equal constant to 400°. The flow is to axial symmetry, the physical properties of the fluid are 
supposed constants and the viscous dissipation’s its negligible.   
   
2.1. The governing equations of the problem  
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The conduction of the heat to inside of the obstacle is represented by the adimensionnal Fourrier equation :  
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The coupling of equations of the energy (5) and (6) makes himself by the condition of flux equality through the 
interface that expresses himself of the following way:   
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The initial conditions and to limits associated to equations are the following:  
At the instant t = 0  u(r, z, 0) = v(r, z, 0) = w(r, z, 0) = T f (r,z,0) = P(r, z, 0) = 0 in the fluid sub-domain .  
at the instant t > 0   
to the entry, z = 0,  0 < r ≤ re:  

u(r, 0, t) = v(r, 0, t) = 0 )sin1(),0,( 0 twtrw w ωε+=     T f(r, 0, t) = 0 

re < r < R:  

u(r, 0, t) = v(r, 0, t) = w(r, 0, t) = 0, 0),0,( =
∂

∂
tr

z

T f
 

to the wall of the cavity, r = R, 
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to the wall of the obstacle, r = rp, z = zp,   
u(rp, zp, t) = 0,  w(rp, zp, t) = 0 and v(rp, zp, t) = v0(1+εsin ω t) 
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to the exit, z = L et 0 < r < rp:  
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on the axis, r = 0,  0 ≤  z < zp:  
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3. NUMERICAL RESOLUTION:  
 
The previous equations associated to the initial conditions and limits have been solved by the finite elements 
method. The domain of calculation has been divided in nine regions delimiting parts fluid and solid, as well as 
all borders (fig.2). calculations have been done on a SUN station while using the FIDAP software. The step in 
time considered is 1/64. The period of the movement has been calculated from the transient regime 
correspondent to a Reynolds number not provoking any dynamic and thermal instabilities within the flow. In the 
case of a number of Reynolds Re=50, the constant of the time, corresponding to the establishment of the transient 



regime is about of the value τ = 520∆t. It is this value that is taken equal to the period of the movement (fig.3) 
for Reynolds numbers  ≤ 100. 
 

 
 
 

           
 
 
 

 
 
 
 

Fig. 2 Integration domain by finite elements 
 

Fig. 1: General sketch of study 
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4. RESULTS AND DISCUSSIONS: 
 
Results obtained show the dynamical and thermal field evolution of the flow in the course of a time interval 
equal to 5/4 of the period. In the absence of the speed of rotation of the obstacle, one notices that the increase of 
the amplitude has for effect on one hand to displace zones of recirculation of fluid in the direction of the flow 
and on the other hand to give rise to an increasing periodical behavior of the axial component of the speed as the 
amplitude grows .It Also appears an wavy form for large values of the amplitude. 
 

4. 1. Influence of periodicity on the thermal exchange:   

 
The exp ression of the entry velocity is: t) sin( ωε+= WWW 10 where W0 is the mean velocity, it’s taken 

equal to the half of the reference velocity, εW is the amplitude ( 0≤ εW ≤ 0,9), w the frequency. T being the period 
of the movement (T = 8,12). The periodicity of the entry velocity appears dynamically especially on the axial 
component of the velocity. In fact (fig.4a) shows that this last varies a periodic manner during the time, where 
equal value curves to change positions in a cyclic manner during the time. In the annular part, the axial velocity 
component presents a parabolic shape where the maximum value of the curve varies a cyclic manner (fig.4b). 
This influences of the dynamic periodicity on the thermal exchange between the solid and the fluid in the region 
upstream of the solid, it is the region concerned by the convection movement.   
The isotherm lines in this region change position in a cyclic manner during the time. On the other hand in the 
region close to the solid, where phenomena of pure conduction appear solidly, the thermal exchange between the 
solid and the fluid reaches its equilibrium. The radial profile of the temperature corresponding to the cylindrical 
part presents a shape that varies very little during the time.   
The existence of velocity of a rotation of the solid enrich generally the radial velocity component of the flow. 
The periodic shape of this velocity influences on the dynamic and thermal behaviour of the flow. The dynamic 
field tends to present a shape of periodicity during the time more perceptible that for the thermal field. The 
studied cases concern the amplitude of axial velocity varying of εW = 0,1 to εW = 0,9 with amplitude of  rotation 
velocity  varying of εV = 0,1 to εV = 0,4. The velocity of the solid is governed by the equation:   
V = 0.5 Vmax (1+εvsin ω t). Where Vmax is the maximal rotation velocity permitting the dynamic stability of the 
non periodic flow (Vmax = 1).. This pulsation is taken equal to the one of the entry velocity in order to eliminate 
the modulation of the resulting amplitude of the two superposed periodic movements. The perturbation of 
amplitude ε is chosen in order to not to create instabilities within the flow. In this study the reached maximal 
value is equal to 0,4. [12] [13] [14]. The configuration of the radial profiles of components velocity shows that 
the amplitude of the two components, axial and radial, has a comparable values and present a certain periodicity 
during the time. It is to signal that this periodicity is more perceptible for the axial component that for the radial 
component. This phenomenon plays a role in the mechanism of the thermal exchange between the solid and the 
fluid.   
When the velocity rotation believes εV = 0. 4, the radial velocity component increases while to enrich the thermal 
convection. The periodicity shape of the thermal exchange becomes more and more perceptible when the 
amplitude of the rotation velocity increases. We noted that the region close to the solid ,where the thermal 
exchange to be made by pure conduction ,is nearly insensible to the periodicity of the flow.   
 
  
a) 



 
 
b) 
 

 
Fig.5 : Isotherm lines configuration. (a) Radial profiles of temperature on cross-section relative to 

cylindrical  solid part (Z= 1.69). (b)  For two different times (from left to right :t = t1 = T/4 ; t = t4 = T). 
 
4. 2. Influence of difference of phase between the entry  and the rotation velocity: 
 
The variation of two periodic movements superimposed with a difference of phase between them influences on 
the mechanism of the thermal exchange between the heated solid and the fluid. One presents in this study a 
difference of phase: ϕ = -π/2, and one compares it to the case (ϕ = 0). The isotherm lines shows the time evolution 
for the two cited cases. One notices the relative curves to isothermal lines present points of inflection in the two 
regions annular and conical near of the solid wall. In the cylindrical zone, the axial conduction begins to appear 
in presence of the existence of the difference of phase. The analysis of isotherm lines and the radial variation of 
the temperature shows that in the case of the difference of phase is equal to -π/2, the  zones touched by the 
thermal convection in the cylindrical part are more extended that in the absence of the difference of phase. On 
the other hand it is the inverse phenomenon that occurs in the zones near the conical wall. One also notes that the 
radial gradient of the temperature presents an inversely proportional variation with the difference of  phase in the 
annular region and proportional variations in the conical region.   
 
 
5. CONCLUSION:  
 
A numerical study relative to the influence of a type sinusoidal perturbation on the dynamic and thermal 
behaviour of a real fluid flow is achieved by the finite ele ments method.  In the absence of the solid rotational 
motion, the flow is characterised by an axial aspect. A certain periodicity in the variation of the axial component 
of the velocity during the time appears. The thermal exchange between the heated solid and the fluid in the 
conical region, are to the upstream of the arrival flow and therefore more dependent of the variation of the axial 
velocity, what gives a certain periodicity in the convective movement. The other region, be in the annular part is 
characterised by a radial profile of the temperature that has tendency to keep the same shape during the time.   
In the case of the superposition to the periodic movement of fluid entry velocity and the solid periodic rotation,  
the thermal field present a periodicity  shape during the time. This shape is more and more perceptible as the 
amplitude of the rotation velocity increases. That notes that the augmentations of the radial velocity component 
increases the thermal exchange by convection between the fluid and the solid. Nevertheless the maximal value of 
the rotation velocity is conditioned by the maintenance of the dynamic and thermal stability of the flow, the ratio 
of amplitudes, axial and azimuth is equal to 0,3 in this study.   



The case corresponding  to a difference of phase equal to a -π/2 between the entry  velocity and the rotation 
velocity has been studied and has been compared to the case of the with out of phase absence. The results show 
that the mechanism of the thermal exchange by conduction is dependent of the difference  of phase existence. 
With regard to the thermal convection in the annular zone it is more important for the case with difference of  
phase existence. We noted that curves of temperature present points of inflection in presence of with out of 
phase, what can contribute to the thermal instability apparition.   
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